

A STEEL ROADMAP FOR A LOW CARBON EUROPE 2050

A STEEL ROADMAP FOR A

FOREWORD

The European steel industry is determined to deliver a positive contribution to a more sustainable economy in Europe by providing innovative types of steel needed for low carbon solutions in a variety of sectors and by reducing its own CO₂ emissions.

Only with a modern, innovative and profitable steel industry in Europe can the EU's targets for a sustainable, carbon-lean and competitive economy be met. EU policymakers need to provide the right framework conditions and infrastructure to enable industry to contribute effectively whilst remaining competitive on a global scale.

Success is only possible if there is a fundamental transformation of the European economy, including a total renewal and technological upgrading of the main infrastructures for transport, energy and housing. Conditions must be created to foster the growth of new and smarter industrial technologies, consumer products and all the transport fleets (air, land and water) that will operate within the new infrastructures. The job of renewal is not limited to merely a select number of economic sectors. It is a societal challenge requiring not only huge public investment in infrastructure, R&D, the demonstration and deployment of innovative technologies, as well as access to finance and risk sharing for businesses, there is also a need for broad public acceptance. Future infrastructure, technologies and transport will not only have to be environmentally-friendly to the maximum possible extent, they will also have to enable society to run more efficiently, with increased consumer satisfaction and a cost-benefit for every part of society, including the EU's industrial value chains and its workforce, which form the basis of prosperity in Europe.

The effects of human activity on the earth's climate are a global challenge and responsibility. A coordinated world-wide response is therefore essential in order to reach an acceptable degree of global greenhouse gas emission reductions in line with the recommendations of the Intergovernmental Panel on Climate Change (IPCC). In the absence of an international agreement that would provide for the necessary global reductions in greenhouse gas emissions, the EU has set its own aspirational pathway culminating in a target of 80% to 95% CO₂ emission reductions by 2050 compared to 1990 levels. Furthermore, it has set binding measures to decarbonise the EU economies, with the EU Emissions Trading Scheme as its flagship instrument.

Neither the proposed pathway nor the measures indicate how each industrial sector is to meet the objectives either from a technical perspective or in terms of the cost implications and the associated effects on international competitiveness. They are also not based on a life cycle assessment of materials and products and do not take into account the contribution sectors such as the steel industry make to emission reductions through their innovative products.

As a response to the current EU climate policy framework and the Commission Communication on a *Roadmap for moving to a competitive low carbon economy in 2050*, the EU steel industry in 2012 contracted the Boston Consulting Group together with the Steel Institute VDEh to assess the CO₂ mitigation potential of the EU27 steel industry up to the year 2050. Based on the results of that study and after comparison with existing research, the European steel industry has developed its own 'Steel Roadmap for a Low Carbon Europe 2050', which includes recommendations for policy makers.

The Steel Action Plan, presented by the European Commission in June 2013 and aimed at improving the global competitive position of the EU steel industry, acknowledges how much the steel sector is currently under pressure. In an increasingly global economy, this situation will not change any time soon. The EU must therefore refrain from unilateral climate action. Instead the EU should give the industry the means to develop the breakthrough technologies that are indispensable and at the same time until these technologies are available and affordable provide effective protection against distortions to competition. Investment is fleeing Europe. The unpredictable regulatory environment caused by repeated attempts to change the rules governing emissions is one reason for this development. But it would not take much to reverse this trend and restore a climate that encourages investment in Europe – investment in new technologies and products.

Wolfgang Eder President of EUROFER

Gordon Moffat Director General of EUR

6

ACKNOWLEDGEMENTS

This Roadmap has been prepared by the EUROFER staff in close collaboration with the EUROFER Low Carbon Steel Roadmap Working Group. The authors wish to express their gratitude to the Working Group members for their assistance and support. Special thanks also go to the members of all EUROFER committees involved in the work.

EUROFER would also like to thank the Boston Consulting Group and the Steel Institute VDEh for their technical contribution without which this study would not have been possible. The vivid exchanges of views in the Steering Committee meetings were an important part of the process and finally helped laying solid grounds for this very challenging work.

The authors wish to acknowledge with much appreciation the review carried out by Ecofys. Their independent review of the policy recommendations stimulated improvements and coherence throughout the study.

Last but not least, many thanks go to all organizations and individuals who contributed to this work by providing data, reviewing the study and exchanging views. The authors would like to thank in particular the following organizations for their time and attention: the European Bank for Reconstruction and Development, the European Steel Technology Platform, the International Energy Agency, the IEA Greenhouse Gas R&D Programme and the Joint Research Centre of the European Commission.

TABLE OF CONTENTS

FOREWORD ACKNOWLEDGEMENTS EXECUTIVE SUMMARY

01. STEEL FOR A MODERN, SUSTAINABLE SOCIETY

02. EU CLIMATE POLICIES FOR STEEL

The EU's global climate objectives

EU pathway for CO₂ reductions in industry 1990 to 2050

03. STEEL FROM A GLOBAL PERSPECTIVE

04. STEEL AS CO₂ MITIGATION ENABLER

Assessing the role steel plays in terms of CO₂ and energy How steel works for climate protection Conclusions

05. STEEL TECHNOLOGY PATHWAYS - ABATEMENT POTENTIA

Modern steelmaking

Primary Steelmaking

Secondary Steelmaking

Summary and economic viability assessment

Development of CO₂ capture technologies in iron and stee

Carbon capture and storage, carbon capture and usage CCS in iron and steelmaking

Potentially innovative steelmaking technologies

ULCOS

Other European & non-European initiatives

Low carbon steel roadmap 2050

The 2030 milestone: findings of the JRC study The 2050 horizon: the BCG/VDEh approach

Deeper CO₂ cuts

Conclusions: low carbon steel roadmap 2050

06. THE ROAD TO 2050: CHALLENGES, OPPORTUNITIES AND C

Reflections on the EU climate strategy

Renewables Energy efficiency

Carbon capture and storage

Carbon capture and usage

International competitiveness of the EU steel industry

Strong EU industrial policy fostering sustainable growth

Support for innovative low carbon steelmaking technologi

07. KEY-FINDINGS AND POLICY RECOMMENDATIONS LIST OF ABBREVIATIONS

REFERENCES

7

	4 6
	8
	16
	20
	20
	20
	22
	26
savings	26
	27
	31
ALS AND ECONOMIC VIABILITY	32
	32
	32
	35
	35
l production	36
	36
	38
	38
	39
	43
	44
	40
	47
	49 51
	5/
	54
	55
	56
	56
	57
	58
	59
ies	60
	61
	64
	65

EXECUTIVE SUMMARY

the potential to meet the CO_2 reduction pathway sector. envisaged in the Commission *Roadmap for moving to* a competitive low carbon economy in 2050. At best, a Therefore a globally competitive European steel reasonably become cost-effective in the future.

However, in order to achieve radical CO₂ reductions, sweeping technological changes would be required. framework conditions with supportive EU policies that keep the EU steel industry competitive on a global scale. as well as the necessary investments in infrastructure. Furthermore, legislators need to take into account that more CO₂ emission reductions can be achieved through

For the time being there are no economically feasible the development and deployment of innovative steel steelmaking technologies available that have grades, most notably in the energy and transport

15% decrease in the overall CO_2 intensity of the sector industry is key for delivering CO_2 savings not only in could be achieved between 2010 and 2050 through the the steel industry itself, but also in the economy at widespread dissemination of technologies that could large through widespread steel-based low carbon applications. In the right conditions, steel could be a key driver towards a competitive low carbon EU economy. The findings of this study come together with a set of recommendations for policy makers. They revolve This is only possible if legislators create the right around the need to maintain the international competitiveness of the EU's steel industry. Consequently, climate policies must be developed not Such policies include continued access to high-quality only with the steel industry's specific characteristics raw materials and energy at globally competitive prices in mind, but also with a wider perspective that takes into account other relevant aspects like restructuring needs, public acceptance of new technologies, environment protection levels, energy, labour cost, taxation and education.

TECHNICAL ECONOMIC ASSESSMENT

The principles of steelmaking have not changed fundamentally over the years. However, technological development has enabled increased control and efficiency of all the steel production processes, which in deployment of innovative technologies like BF-TGR Europe have now reached a high level of optimisation. A number of studies and research programmes have carbon price would have a limited impact in the uptake already looked at how to improve energy efficiency and of new technologies, as even under a carbon price of reduce CO₂ emissions even further in the sector.

The ULCOS¹ programme has made a major same model shows that, with much less conservative contribution to the issue. This initiative, supported by decision-making criteria on new investments the Commission, is aimed at identifying and developing innovative low carbon steelmaking technologies. The reduction in energy consumption and CO₂ emissions ULCOS consortium, which includes all the major EU could amount to around 18% and 65% respectively, steel producers, was set up in 2004. It has evaluated confirming the prominent role BF-TGR should play the technical CO₂ reduction potential of over 80 as a mitigation technology. However as BF-TGR, and existing and potential technologies. This analysis is far especially CCS, are unlikely to be commercially available more extensive than anything that has been done so by 2025, the expected potential would in reality be far in other steel producing regions and by most other much more modest (in the case of CCS, its commercial industrial sectors. Four technologies were found to be availability at all is questionable). promising in the long-term with emission reductions potentials of more than 50%. These technologies were EUROFER contracted the Boston Consulting Group selected to be investigated further through an R&D (BCG) to assess from a techno-economic perspective programme including pilot and demonstration plants: the EU steel industry's options to decrease its CO₂ blast furnace with top gas recycling (BF-TGR), bath emissions up to 2050 (for this project, BCG teamed smelting, direct reduction, and, electrolysis. With the up with the Steel Institute VDEh). The study⁵ also exception of electrolysis all the technologies rely on looks at the possible CO₂ savings in the economy the development of carbon capture and storage (CCS) stemming from the use of innovative steel grades. to realise their full abatement potential. To date the Both the JRC and the BCG/VDEh projects – due to blast furnace with top gas recycling and bath smelting their horizontal, EU-wide approach – are therefore reduction technologies have reached the pilot plant important milestones in the identification of credible phase.

In 2012 the EU's Joint Research Centre (JRC) published The Steel Roadmap for a Low Carbon Europe 2050 a study called *Prospective Scenarios on Energy* builds on these studies. It seeks to reconcile the Efficiency and CO₂ Emissions in the EU Iron & Steel key outcomes and findings obtained from different Industry.² The analysis looks into the steel sector's approaches and combines them into a report with CO₂ savings and energy efficiency potential up to the a set of recommendations on the policies which will year 2030 from a cost efficiency perspective, thereby be required to make EU steel's contribution to the complementing previous modelling work done under decarbonisation of Europe a success.

9

the ULCOS programme.³ Under the assumptions used, the study concludes that the application of best available techniques and innovative technologies would lead, from 2010 to 2030, to a maximum CO_2 emission abatement of 14% to 21%, assuming the and CCS from 2020. The modelling suggests that the €200 the overall sectoral reduction in CO₂ emissions would only reach 19%. A follow-up analysis⁴ using the compared to that assumed in the JRC report, the

CO₂ mitigation pathways for steelmaking in Europe.

[.] 1 Ultra-Low CO₂ Steelmaking.

² Pardo N., Moya J.A., Vatopoulos K. (2012): Prospective Scenarios on Energy Efficiency and CO₂ Emissions in the EU Iron & Steel Industry (JRC Scientific and Policy Reports).

³ Bellevrat E., Menanteau Ph. (La Revue de Métallurgie – CIT- 2009), Introducing Carbon Constraints in the Steel Sector : ULCOS Scenarios and Economic Modelling.

⁴ Moya J.A., Pardo N. (Journal of Cleaner Production - 2013), The potential for improvements in energy efficiency and CO₂ emissions in the EU27 iron and steel industry under different payback periods.

⁵ The Boston Consulting Group, Steel Institute VDEh (2013), Steel's Contribution to a Low-Carbon Europe 2050. Technical and economic analysis of the EU27 steel sector's CO₂ abatement potentials.

STEEL'S CONTRIBUTION TO A LOW CARBON EUROPE 2050

The BCG/VDEh study follows a holistic approach in determining CO_2 mitigation potential of the EU steel As for the 2050 horizon, the BCG/VDEh study projects industry, taking into consideration both the emissions from steel production and the effects of the use of steel in innovative applications. It assesses the technical potential of existing or projected technologies as well as the economic viability of the retained options. The study also looks into CO_2 savings related to the use of in 2050. steel in applications for which steel can be replaced by no other material.

STEEL AS A CO₂ MITIGATION ENABLER

According to BCG/VDEh case studies on eight CO₂ savings applications for which steel cannot be replaced technically or economically by any other material, the into account the projected increase in scrap availability yearly savings for the EU27 of these applications alone would amount to at least 443 Mt CO₂ in 2030. This amount has to be compared to the emissions released while producing the steel grades under consideration (70 Mt CO₂) and the total EU steel industry emissions 13%, from 298 Mt CO₂ in 1990 down to 258 Mt CO₂ in of approximately 220 Mt CO₂ in 2010. Additional significant emission reductions could be established from 1.508 tonnes CO_2 /tonne of steel in 1990 down if the scope was extended to other steel uses. It can to 1.093 tonnes $CO_2/tonne$ of steel in 2050 (-27.5%). be concluded that the application of innovative grades This represents a decrease in specific CO₂ emissions of steel, developed and produced in Europe, will result by 10% between 2010 and 2030 and by 15% between in an amount of CO_2 mitigation which is at least 2010 and 2050. double of the CO_2 emitted by the whole sector itself. In this respect, steel can be justifiably classed as a CO_2 In the *direct reduction scenario*, the expected overall mitigator.

CO₂ REDUCTION POTENTIAL FROM STEELMAKING

CO₂ emissions from EU27 steel production fell by over 223 Mt in 2010 (direct and indirect emissions calculated down to the hot rolling process). This decrease is mainly due to a partial shift from production using virgin ores production volume), efficiency gains, and, the decrease

of CO₂ emissions from electricity generation. Specific CO₂ emissions decreased by about 15% from 1.508 to 1.293 tonnes CO₂/tonne of steel over the same period.

– based on proprietary modelling – that the EU steel market will grow by 0.8% annually, leading to EU crude steel production of 236 Mt in 2050. The amount of scrap available within the EU is projected to grow by 0.9% annually, increasing from 96 Mt in 2010 to 136 Mt

Under these assumptions the BCG/VDEh study assessed the EU steel industry's mitigation pathways via several abatement scenarios.

The economic scenario involves the implementation of cost-effective incremental technologies and bestpractice sharing throughout the sector. It also takes resulting in a growing share of secondary steelmaking from 40% up to 44% in 2050⁶ as well as the effect of the decrease of the CO_2 intensity of the power sector⁷. It would lead to an absolute CO₂ emission reduction of 2050. Specific CO₂ emissions would in parallel decrease

CO₂ reduction in the sector without CCS would amount to ca. 40% between 1990 and 2050. However this scenario is not economically feasible as the energy price conditions that are prevailing now are not adequate to enable the deployment of this technology. The BCG/VDEh study estimates CO₂ abatement costs pertaining to the shift from the existing BF-BOF route 25% between 1990 and 2010, from 298 Mt in 1990 to towards the Direct Reduced Iron – Electric Arc Furnace route (DRI-EAF) as ranging from €260/tonne of CO₂ to €710/tonne of CO₂. These figures represent the cost of abandoning existing installations for new ones with to production by recycling scrap through the electric higher operating costs. The DRI-EAF route relies on arc furnace route (accompanied by a contraction in natural gas and electricity which are both excessively

expensive in Europe. Even under favourable natural CONCLUSIONS gas and electricity prices, the technology change would incur huge investment costs which would be impossible without adequate support policies.

As under the CCS scenario, all iron-ore based steelmaking technologies have the same CO₂ intensity (ca. 0.7 tonne CO₂/tonne of steel), it can be concluded that the retrofit of existing blast furnaces with top gas recycling technology would be the most sensible option. Such a scenario involving full deployment of CCS and at the same time steps are taken to shield the would lead to a reduction of absolute CO₂ emissions of ca. 60% in 2050 compared to 1990, still falling short of the EU's 80% aspirational objective.

However to date economic viability and general 2050.¹⁰ In practice such levels of abatement would applicability of CCS in Europe raises many questions require as a minimum condition for their achievement and at this point its large-scale feasibility is seen yet unproven innovative or 'breakthrough' technologies as unlikely. Figures pertaining to CCS costs in the and CCS to be commercially available at competitive steel industry show a high sensitivity to site-specific costs for the EU steel industry. conditions. Recent research suggests that such costs would amount to a minimum of €50 per tonne of CO₂ In view of the above, the EU steel sector will need just for capture and without transport and storage in substantial support and co-operation from policy the case of the ULCOS blast-furnace top gas recycling.⁸ makers to shape the right framework conditions in These numbers come from project calculations and order to maximise its contribution, especially regarding this technology has yet to be proven at industrial CO_2 mitigation at installation level. Furthermore, the scale. In the face of public resistance to CCS in a $\,$ contribution of European steel to CO₂ abatement growing number of Member States, the costs relating should be evaluated and accounted for based on a to CO₂ transport over long distances and storage are holistic approach, taking into account the benefits expected to have a high impact on steel production steel production and steel products convey. costs, depending on local conditions.9

DEEPER CO₂ CUTS IN THE STEEL SECTOR

Bringing the steel sector's emissions further down would need the deployment of technologies like HIsarna (smelting reduction) or ULCORED (direct reduction) both connected to CCS – or hydrogen-based reduction, should they prove technically feasible. Under a fully decarbonised electricity scenario, electrolysis could to help create a sustainable Europe. also be envisaged as a potential solution. From today's perspective, it is not possible to predict which technology or combination of technologies is most likely to emerge.

The challenges the EU steel industry is facing are many and varied. They include access to growing markets as well as to high-quality raw materials and affordable energy. With continued investment in R&D, innovation, process control and energy efficiency, the EU steel sector has managed to remain competitive despite adverse conditions in the EU compared to those of its main competitors outside the EU. These conditions need to be improved so as to enable steel

. 6 The modelling is based on the assumption of self-sufficiency for both the EU steel and scrap market. 7 According to IEA projections. The complete decarbonisation of the power sector by 2050 would lead to further emission decreases.

From today's perspective – and given current energy market conditions and infrastructure – the ambitious objectives proposed in the Commission Low Carbon Roadmap for the ETS of 43-48% by 2030 and 88-92% by 2050 compared to 2005 levels is technically and economically unachievable for the steel industry unless alternative innovative steelmaking technologies combined with CCS are deployed at industrial scale sector's competitiveness. This is also true for the 1.74% pathway envisaged under the EU's Emission Trading Scheme (EU ETS), which results in CO₂ reductions of 37.6% by 2030 compared to 2005 levels and 70.9% by

⁸ Hooey L., Tobiesen A., Johns J. and Santos S. (2013), Techno-Economic Evaluation of Incorporating CO₂ Capture in an Integrated Steel Mill. 9 Zero Emission Platform (2011), The Costs of CO₂ Capture, Transport and Storage, Post-demonstration CCS in the EU. 10 The 1.74% linear reduction factor would lead to CO₂ reductions of 45.5% by 2030 and 74.6% by 2050 compared to 1990 levels.

To this end, EUROFER suggests a number of policy recommendations which the reader can find in Chapter 7 of this report. These are meant to set the right conditions so as to enable the EU steel industry to decarbonise whilst retaining its competitiveness on Adequate support for new technologies, both the global scene by making the most of steel as a CO₂ mitigation enabler. These policy recommendations can be summarized as follows:

Future policies should not damage the competitive position of the steel industry. They should provide the appropriate incentives for CO₂ mitigation as well as effective protection from distortive CO₂ costs. This necessitates taking into consideration the economic

potential of improvement in the sector, what is technically achievable over time at an acceptable cost.

for carbon-lean steel making technologies and the establishment of the infrastructures which enable these, is required to bring about radical CO_2 emission reductions in the steel industry. As already demonstrated with renewables and CCS, carbon pricing cannot bring about the emergence of breakthrough technologies. Public funding will be needed as the vast investments required will exceed the industry's financing capabilities.

- Future policies must recognise the positive role steel Unilateral climate action by the EU along the lines of will play in achieving the EU's carbon abatement goals. A broadened view must be taken to incorporate and take into account the benefits of innovative steel the EU steel industry. Mitigation targets should be grades and steel applications in CO₂ mitigation.
- A coherent and predictable energy and climate policy efforts to bring as many nations as possible including framework post 2020 is urgently needed. The EU institutions and Member States have to commit to the provision of policies and means that are consistent with the CO_2 reduction ambition and in accordance For illustrative purposes, the steel sector's emission with the timeframe under consideration. In order to create a regulatory environment that stimulates investment over the long-term, they should refrain from piecemeal intervention in the policy framework.

CO2 INTENSITY PATHWAY SCENARIOS FOR THE EU STEEL INDUSTRY UP TO 2050

Emission reduction potentials are expressed in specific CO₂ emissions relatively to 2010 CCS: Carbon Capture and Storage BF-BOF: Blast Furnace-Basic Oxygen Furnace BF-TGR: Blast Furnace with Top Gas Recycling technology DRI: Direct Reduction of Iron EAF: Electric Arc Furnace NG: natural gas

5

13

the mitigation path suggested in the Commission Low Carbon Roadmap would have devastating effects on in line with what the steel industry in other major economies is committing to. The EU should continue its emerging economies – to agree to a meaningful, balanced global climate deal.

reduction trajectories derived from the model developed by BCG/VDEh are shown in Figure 1.

14

FIGURE 2 STEEL INDUSTRY PRODUCTION SITES IN THE EU27

- Primary steelmaking (Blast Furnace and/or Blast Oxygen Furnace)
- Secondary steelmaking (Electric Arc Furnace)
- Processing of steel

15

STEEL FOR A MODERN, SUSTAINABLE SOCIETY

SECTOR SHARES IN TOTAL EU STEEL CONSUMPTION IN 2010

FOR INNOVATION, VALUE CREATION AND formability and versatility, steel is being used in SUSTAINABILITY IN EUROPE

production and processing sites located in 23 EU economy. European steel production has a unique addition, several million more jobs are directly and transformation into a low carbon economy in the indirectly dependent on steel in the value chain and required qualities, quantities and at affordable prices service sectors.¹¹ It produces, on average, 170 million and at the same time generating the value added tonnes (Mt) of crude steel per year, of which about needed to finance the transformation of the built 60% is made via primary steelmaking (blast furnace environment. route) and 40% via secondary steelmaking (steel scrap recycling in electric arc furnaces). In 2009 the sector European steel forms the basis of various industrial generated a turnover of approximately €170 billion, value chains and is closely connected with diverse 1.4% of the EU's GDP.¹²

THE EU'S STEEL INDUSTRY IS ESSENTIAL Due to its outstanding properties in terms of strength, countless applications. The importance of steel is therefore set to further increase as more high-grade The European steel industry employs, at over 500 materials will be required for the greening of the Member States, 350.000 highly skilled people. In role to play in providing the material base for Europe's

manufacturing sectors.

11 For example, the employment indicator for the German steel industry is 6.5 and its production multiplier 2.7. This means that a steel demand increase of 1 euro leads to an increase of production value of 2.7 euro in the economy as a whole (Source: Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Die volkswirtschaftliche Bedeutung einer Grundstoffindustrie am Beispiel der Stahlindustrie, 2011, p. 4). 12 EUROFER member survey 2010; EUROFER data collection.

The sector develops and manufactures thousands of (BF) and electric arc furnaces (EAF) are operating innovative steel solutions in Europe. These provide the close to the technological limits. By-products from the foundation for innovation, durability, CO₂ reductions steelmaking processes such as process gases (waste and energy savings in applications as varied and vital gases) and slags are used as efficiently as possible as automotive, construction, machinery, brown and and save natural resources. Instead of being flared, white goods, low carbon and renewable energies.

New, innovative technologies benefit from the strong steel R&D network in Europe which is – due to its substitute millions of tonnes of primary raw materials diversity and cooperation with other sectors – unique α and save millions of tonnes of CO₂ emissions every in the world.

STEEL ENHANCES RESOURCE EFFICIENCY

The European steel industry is known for being among the most energy and resource efficient worldwide. Today, the best performing European blast furnaces industry (see Chapter 4).

waste gases are recovered for heat and electricity production. Instead of being landfilled, slags are used in the cement and construction sectors. Both thereby year. In 2010 CO₂ savings via the use of process gases totalled about 42 Mt. The recycling of slag led to about 19 Mt CO₂ savings.¹³ The use of these by-products should therefore be encouraged and given due credit in EU legislation. Innovative European steel applications have the potential to save more CO₂ emissions in the EU than the emissions of the entire European steel

13 The Boston Consulting Group, Steel Institute VDEh (2013), Steel's Contribution to a Low-Carbon Europe 2050. Technical and economic analysis of

the EU27 steel sector's CO2 abatement potentials.

STEEL IS ENDLESSLY RECYCLABLE

the long-term conservation of fundamental resources for future generations. Steel can be endlessly and easily recycled at the end of its service life without losing its properties. About 50% of total EU steel production stems from recycled steel scrap (steel scrap being On this basis the study estimates the development of furnaces). Using steel scrap in place of virgin iron ore yields energy savings and thereby accelerates CO₂ due to quality reasons and due to the limits of its availability, scrap cannot entirely replace iron ores).

in 2012¹⁴ looked into correlations of recyclability and production-related CO₂ emissions more closely. for the first time a holistic eco-balance for steel, evaluating all recycling processes over the complete life cycle of the material. Based on the principle that

steel is infinitely recyclable without loss of quality, the modelling integrates primary steel production via the As it is 100% recyclable, steel contributes significantly to BF-BOF route and recycling of steel in the EAF route. Taking account of steel products' different lengths of life cycle lengths, it calculated an average span of 16 years between production and recycling.

fed to electric arc furnaces as well as to basic oxygen CO_2 emissions related to producing one tonne of hot rolled steel, starting with primary BF-BOF production and continuing with the multiple recycling processes emission reductions in the steel industry (although in the EAF route. The study covers 17 life cycles on the whole. It demonstrates that already after six recycling cycles the volume of CO_2 emissions attributable to producing steel decreased by 50% compared to primary BF-BOF production. Via the integration of primary A study by the Technical University of Berlin published and secondary steel production routes, the analysis demonstrates that, in a realistic scenario, productionrelated CO₂ emissions amount to less than 1 tonne Applying a multi-recycling approach, the study delivered CO₂ per tonne of hot rolled steel. Steel scrap recycling creates a win-win situation for both the environment and the economy.

of the reasons why on a global scale there is insufficient recycled material to satisfy the growing steel demand. Virgin material has to be introduced into the supply chain. Primary and secondary steel productions are complementary routes and will continue to be so. In steel importing region in the world but also the second order for the EU to meet its sustainability objectives, it is essential to ensure enough iron and steel scrap 21.4 Mt, the biggest import sources being Russia, is available within Europe at the right quality and at competitive prices. However, to date, the EU is a net exporter of steel scrap (by 16 Mt in 2012).¹⁵

14 Finkbeiner M., Neugebauer S. (2012), Resource efficiency and life cycle assessment, Multirecycling of steel.

15 EUROFER data collection, scrap imports in 2012 totalled 3.4 Mt, exports totalled 19.2 Mt. 16 Worldsteel (2013), World steel in figures 2013. 17 EUROFER.

19

The fact that steel products have long lifecycles is one **COMPETING ON GLOBAL MARKETS**

EU steel makers operate in a highly competitive global market. The industry's trade intensity with third countries is above 30%. The EU27 is the second largest largest exporting one.¹⁶ Imports in 2012 reached Ukraine, China, Turkey and South Korea. EU steel exports for the same year totalled 31.7 Mt, the biggest markets being Turkey, the USA, Algeria, Switzerland, Russia and India.¹⁷

EU steel makers have remained competitive in terms of overall costs and in terms of quality, through a continuous process of investments and restructuring, and this despite energy prices and raw materials, labour and regulatory costs among the highest worldwide.

EU CLIMATE POLICIES FOR STEEL

EU ETS CO₂ REDUCTION PATHWAY

THE EU'S GLOBAL CLIMATE OBJECTIVES countries "contribute adequately according to their

a view to keeping the global temperature rise below objective to reduce greenhouse gas emissions by 80-95% by 2050 compared to 1990 levels, in the context of necessary reductions by developed countries as a group. The European Parliament similarly endorsed **EU PATHWAY FOR CO₂ REDUCTIONS** the need to set a long-term reduction target of at least 80% by 2050 for the EU and the other developed countries.

In the run-up to COP-15 in Copenhagen, the EU also offered to increase its 2020 objective from 20% to 30% emission reductions on condition that other developed international agreement to comparable emission reductions and that more advanced developing in 2068 there will be no CO_2 emissions allowed in the EU

responsibilities and respective capabilities."18 An According to the IPCC recommendations and with international agreement by 2015 providing the necessary abatement commitments by all major 2°C by 2050, the European Council supports an EU economies will be crucial into stopping the continued trend in global greenhouse gas emission increases.

IN INDUSTRY 1990 TO 2050

In 2008 the EU revised its ETS Directive and adopted a mandatory linear CO₂ mitigation pathway of 1.74% emission reduction per annum, resulting in a 21% reduction by 2020 compared to 2005 levels (31% compared to the Kyoto reference year 1990) and countries commit themselves in a comprehensive leading to reductions by 37.6% in 2030, 54.3% in 2040 and 70.9% in 2050.^{19 20} Following this mandatory path,

18 Last reiterated by the Council of the European Union in its Conclusions on the Preparations for the 18th session of COP 18 to the UNFCCC and the 8th session of the Meeting of the Parties to the Kyoto Protocol (CMP 8) in Doha, Qatar, 26 November - 7 December 2012, 3194th Environment Council meeting, Luxembourg, 25 October 2012.

19 Article 9 ELLETS Directive and ELIROFER calculations

ETS sector which will have to be either decarbonised or Such compensation is of particular importance for relocated to non-EU countries.

In order to mitigate the risk of delocalisation of steel amount of compensation available for companies production to non-EU countries (carbon leakage), the hangs on each individual Member State's decision, the EU steel industry is to receive free emission allowances rules for compensation should be overhauled into a at the level of performance benchmarks based on fully operative EU mechanism. the average of the 10% most efficient installations. The main benchmark for the steel industry has been In 2011 the Commission published its 2050 Low set at about 10% below the CO₂ emissions of best Carbon Roadmap and suggested a further reduction performance because the rules failed to account all of emissions under the EU ETS: 43-48% by 2030 and CO₂ emissions from process gases (waste gases) when 88-92% by 2050 compared to 2005 levels. The Commission setting the benchmarks. According to the current EU Roadmap assumes that the decarbonisation scenarios ETS Directive, free allocation would be limited to 25% of the benchmarks in 2021, decreasing each year by equal amounts (5%) reaching no free allocation in 2027.²¹

To avoid carbon leakage, the EU ETS Directive also allows Member States to grant compensation for CO₂ cost pass-through by the power sector to the tempts to alter the EU ETS Directive and other factors linked consumer.

energy intensive industries such as steel. Considering however that under the current framework the

leading to EU domestic emission reductions by 2050 are feasible, "if sufficiently stringent carbon price incentives across sectors can be put in place". Most of the emission reductions would be enabled by changes in technology.²²

The above conditions combined with the repeated atto bad market perspectives have resulted in a degradation of the investment environment in the EU steel industry.

²⁰ The 1.74% linear reduction factor would lead to CO2 reductions of 45.5% by 2030, 60.1% by 2040 and 74.6% by 2050 compared to 1990 levels.

²¹ Article 10a paragraphs 11 and 12 EU ETS Directive.

²² European Commission Communication "A Roadmap for moving to a competitive low carbon economy in 2050" (COM(2011) 112 final), Impact assessment (SEC(2011) 288 final), page 51-54.

22

STEEL FROM A GLOBAL PERSPECTIVE

In 2012 global crude steel production reached 1.52 As will be explained in more detail in Chapter 5, the billion tonnes, 11% of which was made in the EU27. Global steel consumption patterns have changed giving rise to process gases (often called waste dramatically over the past decade, with China gases) with a residual calorific value which are used becoming a dominant player (see Figures 6 and 7). to produce energy in various ways within the steel value Global steel production is forecast to increase by 70% between 2010 and 2050.23

Global greenhouse gas emissions pertaining to steel station) makes the determination of CO₂ intensity very production seem to have followed a similar trend. The CO₂ efficiency of steel production very much depends on the production route. In the EU27, about 60% of little help as most of the emissions stemming from waste crude steel production comes from the integrated gases are reported under the combustion category).²⁴ route (steel production from virgin iron ore through the BF-BOF route). The remaining 40% is produced only via As China's booming production of steel relies hugely the recycling of steel scrap in electric arc furnaces (EAF on the integrated route, CO_2 emissions relating to route, Figure 8).

integrated route consists of several process stages chain, in downstream operations or in power plants, boilers, reheating furnaces, etc. The complexity of energy and product flows (waste gases can be blended in a mixing difficult (data that is made publically available under the EU ETS Directive like in the European Transaction Log is of

steel production are expected to have increased over the past decade proportionally faster than total steel production.

24 Worldsteel, the international steel association, developed a methodology for the collection and reporting of CO₂ data by steel plants, taking into consideration the issues relating to cross-boundary energy flows. This methodology has recently been accepted as an international standard: ISO 14 404-1: Calculation method of carbon dioxide emission intensity from iron and steel production - Part 1: Steel plant with blast furnace and ISO 14 404-2: Calculation method of carbon dioxide emission intensity from iron and steel production - Part 2: Steel plant with electric arc furnaces. EAF steelmaking production as they have already built α emissions in global man-made CO₂ has remained more their steel stock (typically two thirds of the steel stock or less stable, increasing from 6% globally in 1990 to ca. is in buildings, the rest in infrastructure) and therefore 6.5% today.²⁶ The figure for the EU27 is about 5.3%.²⁷ have more steel scrap available for recycling.²⁵ Advanced developing countries like China and others As shown in Figure 9, greenhouse gas emissions in are currently building their steel stock. If they follow the EU27 have decreased by 17.5% over the period a development path similar to developed countries, their steel stock will grow and their steel demand will eventually stabilise as their economies mature beyond represents ca. 15% of the world's GHG emissions (Figure the development stage. In parallel, the steel stock, when reaching the end of its economic life, will be second commitment period under the Kyoto Protocol. available for recycling (post-consumer scrap), resulting However, trade patterns analysis suggests that the in an increase of the share in EAF steelmaking in these stabilization of emissions in developed countries is countries.

1990-2011. From 1990 to 2010, the EU steel sector's emissions fell by 25% (see Chapter 5). The EU – which 10) – is on its way to meet its objective under the in part due to growing imports in carbon-intensive products from developing countries.

23

Developed countries generally have a higher share of \Box In relative terms, the share of the steel industry's CO₂

²³ Allwood J.M., Cullen J.M., et al. (2012), Sustainable Materials: with both eyes open, UIT Cambridge, England.

²⁵ Allwood J.M., Cullen J.M., et al. (2012), Sustainable Materials: with both eyes open, UIT Cambridge, England. 26 Worldsteel, including indirect CO2 emissions. 27 EUROFER calculations (2010).

CRUDE STEEL PRODUCTION OUTPUT BY PROCESS (2011, Mt)

traded goods and services, and to compare these with Kyoto Protocol emission reductions. CO_2 emissions at the stack. They show that carbon emissions consumed by the EU have risen significantly The fact that rapidly growing economies are emitting the EU27.

are because of energy-intensive industries. The EU is have harmful environmental effects. not an exception, as most developed countries have increased their consumption-based emissions faster This is even more compelling for climate change, a than their territorial emissions (Figure 11).

Recent studies²⁸ have tried to quantify the effect by The net emission transfers via international trade from looking into carbon emissions 'consumed' within developing to developed countries increased from 0.4 countries or regions i.e. emissions embedded within $Gt CO_2$ in 1990 to 1.6 Gt CO₂ in 2008, which exceeds the

since 1990, and particularly since 2002. This contrasts an increasing amount of CO₂ and exporting part of it with the decreasing CO_2 emissions trend reported in to the EU demonstrates the relocation of substantial segments of the European manufacturing industry's value chain, pointing unambiguously to a form of The EU's apparent CO_2 emission reduction – the carbon leakage from the EU towards the developing reduction in EU domestic emissions – has been more world. These strong signs of relocation of production than offset by CO_2 consumption: CO_2 consumption to developing countries are evidence of a growing rose by 47% between 1990 and 2006²⁹ because of competitive disadvantage faced by the EU industry. the steep increase in international trade, and in Future climate and energy policies, if not devised particular imports into the EU. About a third of total properly, may exacerbate this effect. As steel production consumption-based emissions were as a result of net is highly regulated in the EU, not only in terms of CO₂ imports of carbon, up from only 3% in 1990. In terms emissions but also from a more general environmental of sector contributions, 40% of the emissions from perspective, the relocation of steel production and the production of traded products at the global level employment from the EU to other countries is bound to

> global issue which can only be successfully tackled through a global approach.

TRENDS IN GHG EMISSIONS IN THE EU15 AND EU27

CUMULATIVE CO₂ EMISSIONS **BY REGION IN Gt**

Gt CO₂ Non-OECD Central & South America Africa Middle-East Non-OECD Europe & South Asia

- Non-OECD Asia
- OECD Asia
- OECD Americas
- OECD Europe

25

CHANGE IN EMISSION TRANSFER AND TERRITORIAL CO2 EMISSIONS 1990-2008 IN Mt

- Brazil
- Rest of non-Annex B

Nations Framework Convention on Climate Change which lists the

²⁸ Andrew Brinkley, Simon Less (2010), Carbon Omissions – Consumption-based accounting for international carbon emissions, Policy Exchange; Peters et al. (2011), Growth in emission transfers via international trade from 1990 to 2008. 29 From Carbon Omissions, page 8 (based on EU6: France, Germany, Italy, The Netherlands, Spain, United Kingdom).

STEEL AS CO2 MITIGATION ENABLER

CASE STUDIES FOR EU27 RESULT IN CO2 SAVINGS

2

4

study

ENERGY

Household / Industry

Case

Source: Steel Institute VDEh; Project team analysis Note: PP = power plant Bioenergy. ² Net reduction refers to reduction attributable to steel. ³ Refers to the emissions related to the amount of steel needed for the specific application.

ASSESSING THE ROLE STEEL PLAYS IN TERMS OF CO₂ AND ENERGY SAVINGS

stack. That 'tailpipe emission' approach focuses on cannot be substituted by alternative materials. For emissions stemming from the production of materials and overlooks the contribution they can bring to the fight against climate change. This could potentially lead to counterproductive outcomes where for example the cost of CO₂ regulation would lead to the relocation outside Europe of facilities producing products which are essential in enabling the EU to meet its climate objectives. A more coherent approach implies looking of the applications under scrutiny can be forecast at a product's CO₂ balance from a holistic perspective, hence taking not only the production but also the use beyond 2030 would not be usable because of the lack phase into account. Applied to steelmaking and steel of reliable forecasts. use in Europe, such an approach shows that steel can save six times as much CO₂ where it is used than is The BCG/VDEh analysis relies on external data collected emitted in production. It also makes it clear that the and published by renowned research institutes. European Union's climate targets cannot be reached without innovative steel solutions.

The BCG/VDEh looked into eight applications to prove this point.³⁰ The analysis concentrates on CO₂ mitigation potential that is directly influenced by steel. The current EU climate policy regulates CO_2 at the Therefore, applications were selected in which steel the same reason, applications with a complex mix of materials and possible reciprocal effects were excluded from the study. The selection focused on applications with a relevant level of abatement potential within the EU27 economies i.e. above a threshold of 5 Mt annual abatement potential at least. The analysis covers the period from 2010 to 2030, for which the expansion with a decent level of confidence. Any extrapolation

30 The Boston Consulting Group, Steel Institute VDEh (2013), Steel's Contribution to a Low-Carbon Europe 2050. Technical and economic analysis of the EU27 steel sector's CO2 abatement potentials.

emissions until 2030 are based on scenarios modelled optimization levers. In one case study – an application for in various scientific analyses. The study applies the which alternative materials might theoretically substitute same methodology as the one used in a previous work steel – the attribution has been reduced to 70%. carried out in 2010 for the German steel association (Wirtschaftsvereinigung Stahl) entitled Steel's CO2 Emissions abatements thus attributed to steel *balance (CO₂-Bilanz Stahl)*³¹ but focusing on Germany alone. Looking at steel from a life-cycle perspective, production of the steel used in the applications. the analysis does not claim to cover every aspect of Because of the high quality of the steels needed for a scientific life-cycle analysis (LCA). Such an approach the applications discussed in the study, the production would also have to cover and integrate additonal climate benefits arising from the steel recycling, for instance.

Steel's contribution to the reduction potential in each application is defined according to its influence on the emissions abatement. For this, four levels of influence The result of the analyses is that total CO₂ mitigation were defined, ranging from 100% for cases in which mitigation potential is caused by steel improvements $Mt CO_2$ per year. This is more than six times as high exclusively, 90% for applications in which steel has a as the 70 Mt CO₂ of overall yearly emissions from significant or main influence on reduction potential, producing the amount of steel used in the applications.

General forecasts regarding the development of CO_2 and 80% for cases in which steel is part of several

are then balanced with CO₂ emissions arising from route assumed in this calculation is the BF-BOF route.

HOW STEEL WORKS FOR CLIMATE PROTECTION

potential in the eight examples alone amounts to 443

[.] 31 The Boston Consulting Group (2010), CO₂-Bilanz Stahl, Ein Beitrag zum Klimaschutz.

EU over the period 2010-2030, which are estimated at protection is therefore positive.

Efficient fossil fuel-fired power plants, offshore wind published by the International Energy Agency. power and weight reduction in cars are presented in detail here to highlight the key-features of the The study compared overall CO_2 emissions from methodology of the investigation.

EFFICIENT FOSSIL FUEL-FIRED POWER PLANTS

the production of the steel needed for the application, efficient fossil-fuel power plants form the case that shows the best reduction/emission ratio of the eight cases looked into. The ratio is 155:1.

Innovative steels are used in many critical parts of such facilities like for example in steam and turbo Wind power is an example that underlines both the generators, boilers, electronics and in numerous structural elements. New, heat resistant steels, for example, are a prerequisite for raising the temperatures and the pressures of the steam driving the generators, thus increasing energy efficiency.

electricity generation in a scenario with efficiency gains as projected as opposed to a theoretical 2030 scenario in which fossil fuel-fired power plant efficiency would remain at 2010 levels. The abatement potential visible in the comparison attributable to steel is 80%. The amount of steel to be produced for the power plants With about 103 Mt CO₂ emissions saved annually up to was calculated according to projections of newly 2030 and only 0.7 Mt CO₂ yearly emissions pertaining to installed fossil fuel capacity for 2030 accessible in the World Energy Outlook and in Platts UDI Data Directories (based on a power plant life cycle of 35 years).

OFFSHORE WIND POWER

potential of steel for mitigating CO₂ emissions and the conservative approach of the study in defining this. Generally, steel is the most applied, key material for wind power generation. This goes for the towers of the windmills as well as for the pods or the gear units.

EFFICIENCY GAINS IN FOSSIL FUEL-FIRED POWER PLANTS RESULTING IN NET CO2 REDUCTION POTENTIAL OF ABOUT 102 Mt

1. Hard coal & lignite combined Note: Figures may differ slightly from exact results due to rounding Source: IEA World Energy Outlook 2012 Current Policies Scenario

EFFICIENCY GAINS IN OFF-SHORE WIND POWER PLANTS RESULTING IN NET CO2 REDUCTION POTENTIAL OF ABOUT 70 Mt

Note: Figures may differ slightly from exact results due to rounding Source: IEA World Energy Outlook 2012; PLATTS UDI WPP (2011-2012); EWEA Wind Energy Targets for 2020 and 2030; Steel's CO2 balance

FOSSIL FUELS POWER PLANTS DRIVERS AND PREMISES

Source: IEA World Energy Outlook 2012; PLATTS UDI WPP (2011-2012); Prognos: The future role of coal in Europe (2007)

29

ANNUAL EU27 CO₂ EMISSIONS REDUCED BY ABOUT 125 Mt DUE TO CAR WEIGHT REDUCTION IN 2030

here steel really is without alternative.

installation.

Offshore wind farms do not have these disadvantages WEIGHT REDUCTION IN CARS and, because of stronger and steadier winds at sea, they offer a significantly higher number of full load Weight reduction in cars is responsible for the hours than inland plants. CO₂ savings from this, which are attributable to steel, amount to 70 Mt per year up to 2030. Yearly CO₂ emissions from producing the steel needed amount to 3 Mt.

In addition, specially alloyed electrical steels are used CO_2 abatement potential was calculated on the basis in the generators that transform the wind power into of scenarios in the World Energy Outlook as well electricity. Yet, in onshore wind farms steel might be as projections made by the European Wind Energy replaced by alternative materials in certain places. Association EWEA. The methodology used takes into The towers for example, might also be made of wood consideration the reduction in CO_2 intensity in the or of concrete or be realised as hybrid constructions EU27's 2030 energy mix, the share of wind energy in containing steel and concrete parts. Therefore, the overall additional renewable energy capacity by 2030 authors concentrated on offshore windmills because as well as projections of the share of offshore wind installations in wind energy capacity for 2030.

Offshore wind power is expected to grow rapidly in Steel's share in these emissions savings is estimated Europe in the coming years. In many European regions to be 90%. Annual emissions from steel production there is already a lack of space for additional inland for this application were calculated according to plants. Landscape preservation has to be taken into projections for newly installed offshore plants until account as well as resistance of local residents to new 2030 and according to a wind farm life cycle of 20 years.

highest absolute emissions savings among the applications analysed in the report. It amounts to ca. 166 Mt annually while CO2 emissions from producing the steel employed are about 42 Mt. Steel is by far the most important material used in vehicle production. About two thirds of a modern car is made of steel. The BCG/ VDEh analysis focuses on car components that can only be made of steel, such as axles or chassis parts.

strength steels that can take up to 40% of the weight according to a passenger car life cycle of eight years. out of car components. Because of their increased strength these steel grades make it possible to use less material in a car part while still meeting all the $% \left(\left({{{\bf{CONCLUSIONS}}} \right) \right)$ functional and, in particular, safety requirements. Modern high-strength steels have been the most The BCG/VDEh study shows through the use of about 75% of the cars produced in Europe.

To calculate steel related emissions savings, projections for passenger transport activity from 2010 to 2030 (passenger-kilometers, pkm), estimated (tonnes/1,000 pkm) and forecasts about steel weight recycled indefinitely into new steel. reduction in cars over the same period were considered. Transport activity data as well as information on CO₂ intensity were taken from the European Commission's iTren 2030 research project. Information on the development of steel weight in passenger cars was gathered by BCG in the course of preparing the CO₂-Bilanz Stahl study.

Reducing weight in vehicles means less fuel Attribution of the mitigation potential to steel consumption and, therefore, fewer CO_2 emissions. is 100% since only steel parts were investigated. The steel industry has developed special high- Yearly production related emissions were calculated

successful lightweight materials used in car production a simplified methodology how much steel will over the past ten years. Furthermore steel is the best be essential for the EU to meet its sustainability automotive material in terms of design flexibility, cost objectives. As the current EU policy framework focuses effectiveness, low emissions during manufacture and on tailpipe emissions only, it fails to capture this recyclability. Steel use is therefore particularly praised fundamental aspect. In order to promote policies which in the compact and midsize segments that account for truly reduce CO_2 emissions and support materials providing lean-carbon solutions, CO₂ emissions would be best regulated by using a life cycle assessment approach (LCA), taking into account all of the emissions created during the life of a product from raw material production to product end-of-life. Such an approach improvements in CO_2 intensity from 2010 to 2030 would also acknowledge the fact that steel can be

32

STEEL TECHNOLOGY PATHWAYS **ABATEMENT POTENTIALS** AND ECONOMIC VIABILITY

MODERN STEELMAKING PROCESSES

MODERN STEELMAKING

Two main steelmaking processes can be distinguished. Primary steelmaking converts virgin iron ores into crude steel. Secondary steelmaking consists of the recycling of iron and steel scrap in an electric arc furnace (EAF route). Primary steelmaking in Europe is almost exclusively carried out in integrated steel plants where the reduction of iron ores into iron takes place in blast total reducing agents employed in the blast furnace), furnaces (BF route). There are two other steelmaking routes in use, namely smelting reduction and direct reduction (DRI route). In 2011 380,000 tonnes of DRI were produced in the EU27. This amounts to 0.2% of Sinter is produced on-site in the sinter plant, where the European steel output for the same year. There is iron ore fines are agglomerated with fluxes (the energy no smelting reduction plant in the EU.

PRIMARY STEELMAKING

Blast Furnace route

In the Blast Furnace route, steel production takes place at an integrated steel plant including one or more blast furnaces where iron ores are reduced into liquid iron (hot metal) through the use of reducing agents such as coke (which on average accounts for about 80% of the pulverized coal and to a lesser extent natural gas, coke oven gas or oil. Iron ores are fed into the blast furnaces in the form of sinter, lump ore or pellets. demand of this process is met through the addition of coke breeze). Pellets are either procured from external sources or produced in an on-site pelletisation plant.

Hot metal is converted into steel by oxygen injection The amount of imported energy is relatively small, in a basic oxygen furnace (BOF). The conversion of though, compared to the total energy demand, which is hot metal into steel is an exothermic process. Scrap, mostly satisfied by the waste gases recycled internally. iron ore and other coolants have therefore to be fed into the BOF to keep the temperature at a reasonable The operations taking place in an integrated steel level. Liquid steel then goes through a metallurgical site are deeply intertwined and over the years have

crude steel production is produced via the BF route.

generate process gases with a residual calorific value.

additional energy (natural gas, electricity) to close the

energy balance.

treatment (secondary metallurgy) before being cast Coke plants, blast furnaces and basic oxygen furnaces

The CO₂ intensity of integrated steelmaking decreased from 1.968 tonnes CO₂/tonne of steel in 1990 to 1.888 These gases – often called waste gases – are mostly tonnes CO₂/tonne of steel in 2010. This reduction may recovered and used to produce steam and electricity in seem modest, but it must be noted that most of the boilers and power plants. They are also used for heating EU steel industry's efficiency improvement took place purposes, e.g. in ovens and stoves, as a substitute for between the 1950s and the 1980s, as illustrated in natural gas. On average, integrated steel plants import Figure 19.

33

undergone a process of optimisation in terms of in various shapes and dimensions. About 60% of EU material as well as energy flows.

Direct reduction-based technologies

into solid primary iron. The solid product is called direct electric arc furnaces (EAF). It can also substitute scrap in a basic oxygen furnace (BOF).

Usually reformed natural gas (rich in CO and H2) is significant additional advantage. used as a reducing agent.

separation of iron from the gangue in the reduction $high degree on the CO_2$ emissions associated with the facility, high-grade ores or concentrates (68% Fe and a gangue content below 7%) have to be used.

normally used as feedstock for EAFs, together with consideration this side effect as part of a holistic scrap. DRI's low level of metallisation and high gangue content significantly increase the specific power today some 20% below the CO₂ intensity of the blast consumption in the EAF.

pyrophoric and needs careful handling over long specific energy consumption at the melting stage (EAF). distances). DRI is often hot-compacted into briquettes (hot briquetted iron - HBI) in order to be stored and transported safely.

1960s. Because the leading direct reduction processes require cheap natural gas and electricity, most plants equator.

in Hamburg, Germany. The plant started up in 1971 be granulated for further use. and was the first MIDREX unit in the world to be built. Because of the steady increase in energy prices In 2011, hot metal produced from smelting reduction following the first oil shock, DRI technology never technologies amounted to ca. 6.8 million tonnes took off in Europe, no other DRI plant having ever worldwide. Only the FINEX and COREX technologies been erected in Europe since then. The DRI plant in have reached medium size industrial applications. The Hamburg feeds an EAF producing high quality steel. DRI is used as a complement to steel scrap in order the necessity to replace coke by coal. It is therefore to keep the quality of the feedstock at a high level used primarily in regions without sufficient primary by diluting impurities introduced through the use of energy sources (the surplus of waste gases being scrap. The DRI feed to the EAF is therefore adjusted provided to public heating systems). according to the quality of the scrap being used.

Global direct reduced iron production grew from 0.8 Direct reduction consists of the reduction of iron ores to 70 million tonnes between 1970 and 2010. DRI capacity increased fastest in regions that are short in reduced iron (DRI) and is mainly used as feedstock in scrap or where the demand is insufficient to justify the construction of an integrated steel plant, but where low natural gas and electricity prices are available. In this regard, the flexibility of DRI plants can be a

Because of its relatively high electricity consumption, As the direct reduction process does not allow the CO_2 intensity of the DRI-EAF process depends to a procured electricity. Contrary to integrated steelmaking, direct reduction does not produce granulated slag, which leads to CO₂ savings in the cement sector (in 2010 the Typically DRI has a metallisation rate above 92% and production of granulated BF slag in the EU amounted a carbon content below 2%. Direct reduced iron is to 215 kg per tonne of hot metal). When taking into approach, the CO₂ intensity of DRI-EAF steelmaking is furnace route 32

Because it may pose a fire hazard (DRI is highly Hot charging DRI to the EAF somewhat decreases the

Smelting reduction

In this two-step process, iron ores are heated and The first commercial DRI plants were built in the late pre-reduced by the off-gas coming from the smeltergasifier. Pre-reduced iron ores are then fed into the smelter-gasifier where they are melted. The smelterare situated in the oil and gas-rich belt around the gasifier uses oxygen and coal as a reducing agent (instead of coke). This process produces hot metal which has then to be converted into liquid steel in a The only direct reduction facility in Europe is located BOF. As with a BF, this process generates slag that can

use of the smelting reduction technology is driven by

A typical smelting reduction unit has a CO₂ intensity about 25% higher than the blast furnace route.

Electric Arc Furnace route

in an Electric Arc Furnace (EAF). The major feedstock to the EAF is ferrous scrap, which can be home scrap the years up to 2050 along with the decarbonisation (scrap arising within the steel mill), pre-consumer of the power sector. However, as already pointed out, scrap (scrap arising in steel using industries) or increasing the share of EAF steel is constrained by the obsolete scrap (scrap coming from steel products at availability of scrap and the quality requirements steel the end of their life). Cast iron and DRI (HBI) can also be grades have to meet. fed into the EAF.

The EAF process uses electricity as its main source BF-BOF steel in Europe and NAFTA, especially at of energy. Other sources of energy are often used in times when markets were weak.³³ EU's steady 'scrap combination to varying degrees (e.g. natural gas, coal, mine' combined with a higher flexibility and lower coke). Fluxes and oxygen are also fed into the process. capital requirements of the EAF technology explain Liquid steel poured from the EAF then goes through its success over time (Figure 20). However, recent a metallurgical treatment process (secondary metallurgy) before being cast in various shapes and deteriorated the margin of the EAF sector. Ever dimensions. About 40% of EU crude steel production is increasing electricity and gas prices and the inability of produced via the EAF route. The expansion of the EAF route in Europe is driven by scrap availability and scrap squeeze the EAF margins further. It is worth stressing quality considerations. Besides, extensive use of scrap in this respect that US shale gas poses new challenges tends to introduce impurities into steel, many of which to EU EAF steelmakers. Should the pressure to export cannot be got rid of. EAF steel therefore tends to be scrap continue to increase over the coming decades used more for making products that are less sensitive as well as electricity and gas prices, the EAF route is to the presence of impurities such as reinforcing bars unlikely to expand much beyond the current levels as for concrete, although stainless steel in Europe is also its competitiveness would be significantly threatened. produced via the EAF route as it enables the recycling of stainless steel scrap.

degree on CO₂ emissions associated with the procured electricity. The CO₂ intensity of EAF steelmaking effect of the decrease of the CO₂ intensity of the power improvement, see Figure 25).

This route consists in melting iron-bearing material In terms of CO₂ mitigation, the EAF route has by far the lowest CO₂ intensity. It could be decreased further in

Direct reduction-based technologies have the potential to reduce specific steel production emissions The CO_2 intensity of EAF steelmaking depends to a high by $20\%^{34}$ compared to modern integrated steelmaking. According to the analysis carried out by BCG/VDEh, the investment costs for a greenfield DRI-EAF plant decreased from 0.667 tonne CO₂/tonne of steel in 1990 are lower than for an equivalent greenfield integrated to 0.455 tonne CO₂/tonne of steel in 2010. Most of the steel plant, but still much higher when compared improvement comes from energy efficiency gains. The to an existing integrated plant. Furthermore, as suggested by Figure 19, the process's operating costs sector is rather limited (accounting to ca. 10% of the are also prohibitively high in Europe because of the comparatively higher natural gas and electricity prices. For these reasons and despite the advantage of higher operational flexibility, the DRI/EAF route cannot compete with the BF-BOF route in Europe. BCG/VDEh evaluated the CO₂ abatement costs of shifting from an existing BF-BOF plant to a new DRI-EAF plant at between €260 and €710 per tonne of CO₂. This figure does not include the unavoidable decommissioning costs.

35

SUMMARY AND ECONOMIC VIABILITY ASSESSMENT

All in all, EAF steel has usually been cheaper than developments in the scrap market have substantially the EU to keep them at sustainable levels are likely to

SECONDARY STEELMAKING

COMPARISON OF CAPEX OF ALTERNATIVE STEELMAKING

In a scenario with lower natural gas and power prices, This can be: new DRI-EAF route capacity could become competitive an oil or gas field, nearing the end of its life or already in primary steelmaking in Europe. However, the current steelmaking overcapacities in Europe would be • a deep saline aquifer isolated from the surface sufficient to cover the most optimistic steel demand projections out to 2050. New capacity in primary steelmaking is therefore not expected. If demand does 📃 coal seams, containing methane, that will never be outstrip supply, additional DRI-EAF or DRI stand-alone capacity is likely to be built but only outside the EU, in regions with lower natural gas and electricity prices. Recent DRI projects in the USA (Nucor, Voestalpine) tend to confirm the role played by the shale gas in a gaseous or supercritical phase, depending on revolution and resulting low gas and electricity price local conditions. When using aquifers, CO₂ replaces perspectives as a potential game changer in the US steel sector.

DEVELOPMENT OF CO₂ CAPTURE TECHNOLOGIES IN IRON AND STEEL PRODUCTION

CARBON CAPTURE AND STORAGE. CARBON CAPTURE AND USAGE

Carbon Capture and Storage (CCS) is a process whereby the CO₂ stream is captured from the off-gas and stored virtually forever in a geological site.

- depleted,
- and not communicating with sub-surface aquifers containing drinkable water,
- mined or have already been mined

The site can be on-shore or off-shore, underneath the sea floor. CO_2 is injected under pressure, either water and slowly dissolves in it until geochemical reactions occur with the embedding rock and minerals precipitate.

The concentrated stream of CO₂, with a purity of 95% or more, is produced by separating the gas out of the flue gas or process gas (the top gas of a blast furnace in the case of steelmaking) by using chemical or physical technologies (adsorption, absorption, membrane separation, cryogenic separation, etc.) The CO₂ stream is transported to the storage site in a pipeline or in boats, barges or sea vessels.

For the time being, the process of capturing and In the face of strong public opposition in many transporting CO_2 is highly energy-intensive which in EU countries, storage sites might not be available turn decreases the overall efficiency of the system throughout the EU. While sufficient storage capacity the CCS technology is applied to. This results in high operating costs, on top of the huge initial investment being without enough nearby storage capacity, given costs.

Should these issues be resolved, CCS could play an important role in mitigating CO₂ emissions in the future Despite the fact that the necessity of CCS is recognised – up to 19% of global emissions by 2050 according to the IEA.³⁵ Today, only six large-scale storage sites (with a capacity of over 1 Mt CO₂ per year) are in operation *economy in 2050*, the technology has not really taken in the world³⁶ and the inventory of candidate sites and off in the EU. The fact that no CCS projects were selected their capacities is still sketchy in Europe and around in the world, as geostorage requires a complex validation and permitting process on a case by case basis.

Although there are currently no fully integrated, commercial-scale CCS power projects in operation, the technologies that make up CCS (CO₂ capture, transportation and storage) have been in commercial use for decades.

in both the Commission's *Energy Roadmap* and the Roadmap for moving to a competitive low carbon in the first call of the NER300 is not encouraging. The development of CCS requires the stepping up of efforts to secure the financing needed in each of the areas of capture technology, CO₂ infrastructure and geological storage capabilities as soon as possible. In March 2013, the Commission published a consultation paper³⁷ on CCS aimed at spurring the discussion on options to foster the demonstration and deployment of CCS in a timely fashion.

37

probably exists in Europe, steel producers could face the huge volumes of CO_2 involved (ca. 10 to 15 Mt CO_2 per year per integrated steel site).

³⁵ IEA (2012), Energy Technology Perspectives 2012, OECD/IEA, Paris. The 4DS (4°C Scenario) takes into account pledges made by countries by 2012 to limit emissions. The food and drink and biofuels sectors are not included here due to their low contribution 36 http://www.zeroco2.no/projects/list-projects/

³⁷ COM(2013)180, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Future of Carbon Capture and Storage in Europe.

As an alternative to storing captured CO2 in geological Apart from its technical limitations in terms of CO₂ intensity per unit of energy relatively to fossil fuels. This group of processes is known as Carbon Capture and Use (CCU). However this alternative to the Should competition issues be properly addressed and geological storage of CO_2 is unlikely to have a sufficient fully taken into account, the reduction levels involved sequestration potential. The unfavourable economics and the rather limited range of applications suggest contribution to climate protection. Innovative that the corresponding abatement opportunities will remain modest. In particular, CO₂ use would lead to small or even negative net savings, as the energy that is available in the hydrocarbon resource is missing in the CO₂ feedstock, unless the balance is supplied by a **STEELMAKING TECHNOLOGIES**^{41 42} carbon-free source of energy.

in quite different technologies, both for capture and oxy-combustion capture in the power sector: it should actually rather be called 'in-process' capture.

CCS IN IRON AND STEELMAKING

For the time being, only FINEX and HYL-Energiron were organised regionally and mirrored, to some can be connected to a CO₂ capture unit without major extent, the regional ambitions in terms of mitigation changes to the process. The application of CCS to these technologies today would lead in their configuration to a CO_2 reduction of about 25 to 35%.³⁸ In the Blast (<u>Ultra Low CO₂ Steelmaking</u>). There are other regional Furnace route, it is thought that the application of programmes in America, Asia and Australia. All CCS to a waste gases-fired power plant would lead exchange information within a Worldsteel platform to a reduction of about 25% in the site's total CO₂ called The CO₂ Breakthrough Programme. emissions.³⁹

formations, using CO₂ either directly (e.g. in the food accessibility and storage capacity, CCS technology will industry) or as a feedstock in chemical processes be expensive. Costs are expected to be in the range of that produce valuable carbon containing products or €30-€100pertonneofCO₂stored.⁴⁰Such additional costs fuels could be a possible option in the future. New will lead to distortions to competition, endangering the biological processes currently under development position of the EU steel industry on the global scene. make it possible to convert CO_2 , CO and H_2 contained As steel is a globally traded commodity, costs of this in steelmaking waste gases into fuels with a lower magnitude cannot be passed on through higher steel prices, making such an investment unaffordable.

> would in any case fall short of making a significant technologies are needed to really make a difference.

POTENTIALLY INNOVATIVE

The level of reduction in GHG emissions that would It has to be noted that CCS is a technology concept be necessary to mitigate Climate Change down to defined by its ends rather than by its means (a so- a manageable threat (maximum increase of 2°C by called 'end of pipe technology'), and thus is embodied 2050 compared to pre-industrial levels) is much larger than what can be obtained by spreading the use of storage, depending on how industrial sectors want the lowest carbon technologies and by implementing to make use of it. For example CCS as included in the more energy savings. This is even truer for the steel ULCOS processes is quite different from pre-, post- or sector in light of the steep increase in global steel demand and the corresponding increase in production to meet it. Therefore, breakthrough technologies are indispensable.

> Several programmes were launched in the early 2000s to tackle this extremely formidable challenge. They effort. The largest, most advanced and most ambitious programme is the European programme called ULCOS

PRINCIPLE OF THE ULCOS-BF PROCESS

ULCOS

The ULCOS programme was launched in 2004 with the support of the EU provided by the 6th Framework and the Research Fund for Coal and Steel programmes.

Its first phase, called ULCOS I, ran until 2011, with a €75 million budget and EU support at the level of 40% through four different coordinated projects, process uses electricity directly and thus no direct the remainder being financed directly by the project carbon. All of these routes are described below. partners. These partners have been organised in a Consortium of 48 organisations, including 10 steel and mining companies which constitute its Board and have been providing financing beyond their own in-kind contributions; the Board is chaired by ArcelorMittal and comprises Tata Steel, ThyssenKrupp Steel, Riva, Saarstahl, Dillinger Hütte, Voestalpine, SSAB, LKAB and Ruukki, all of which constitute the ULCOS core member consortium.

The first objective of the ULCOS programme was to system that separates the CO₂ from the BF top gas identify steel production process routes, which could robustly deliver cuts in CO₂ emissions of more than 50% per tonne of steel. This meant that the breakthrough routes should be worked out and demonstrated at a scale deemed sufficient for eventual commercial deployment.

39

ULCOS I investigated a panel of more than 80 process routes that could a priori answer the programme's objectives. After benchmarking, modelling, laboratory, bench scale and pilot tests, four routes were selected in a final shortlist. Three of them rely on the use of carbon in coal, coke or natural gas, and thus also on Carbon Capture and Storage (CCS), in a way that has been tailored to the needs of steel production; a fourth

A second phase, ULCOS II, is now under way and should eventually lead to the development of all of these processes to commercial scale, if technical success materialises and if economic conditions are right.

Blast Furnace with Top Gas Recycling (ULCOS-BF)

The first ULCOS solution is based on the Blast Furnace (BF) process route, which today is the major way to produce steel from virgin ores, and is called ULCOS-BF (Figure 22). The process incorporates a CO₂ capture and thus also produces a reducing gas, which is reinjected (recycled back) hot into the reactor at two levels of injectors including the tuyeres; pure oxygen, rather than hot blast, is used to avoid nitrogen getting trapped in the recycling loop.

[.] 38 IEAGHG, 'Overview of the current state and development of CO₂ capture technologies in the ironmaking process', 2013/TR3, April 2013. 39 Birat J.-P, Lorrain J.-P, de Lassat Y. (2009), The "CO2 Tool": CO2 emissions & Energy consumption of existing & breakthrough steelmaking routes (La Revue de Métallurgie – CIT).

⁴⁰ European Commission, Consultative Communication on the future of Carbon Capture and Storage in Europe (Référence: MEMO/13/276, 27 March 2013). 41 Jean-Pierre Birat, Jean Borlée, Hervé Lavelaine, Dominique Sert, Patrick Négro, Koen Meijer, Jan van der Stel, Peter Sikstrom, ULCOS PROGRAMME: AN UPDATE IN 2012, 4th International Conference on Process Development in Iron and Steelmaking, 10-13 June 2012, Luleå, Sweden

⁴² J.-P. Birat, Steel sectoral report, Contribution to the UNIDO roadmap on CCS, "Global Technology Roadmap for CCS in Industry" sectoral workshop, Abu Dhabi, 30 June-1 July 2010;

http://www.unido.org/fileadmin/user_media/Services/Energy_and_Climate_Change/Energy_Efficiency/CCS/Stee_sectoral_%20report.pdf

PRINCIPLE OF THE HISARNA SMELTING REDUCTION PROCESS

PRINCIPLE OF THE ULCORED PROCESS

transport and storage of CO₂ should be the next step. introducing a CO₂ washer on the top gas and switching future campaigns. over to pure oxygen operation at the tuyeres. All this has nonetheless to be confirmed in a demonstration HIsarna would probably be a preferred process for a plant test.

Bath smelting (HIsarna)

HIsarna is a Smelting Reduction process concept (based on carbon like the BF), incorporating a cyclone for heating and melting iron ore and a bath smelter, akin to the SRV of HIsmelt. The process is a joint development of ULCOS and Rio Tinto (Figure 23).

The ULCOS-BF process has been tested in three It has been redesigned to produce CO₂-rich off-gas, by campaigns on the Experimental Blast Furnace (EBF) using pure oxygen rather than enriched air; the gas is of LKAB (one in 2008 and two campaigns in 2010; expected to be stored, with a very limited amount of the furnace has a hearth diameter of 1.2 metres). separation/concentration. HIsarna has been designed Given their positive results and the close match with up to the erection of an 8 tonnes per hour pilot plant the extensive modelling that preceded the tests, the (with a hearth diameter of 2.7 metres), which is a scale-up to a demonstrator on a commercial BF (with necessary step in the validation of the process concept a hearth diameter above 10 metres) with integrated before a full demonstrator (6 metre diameter hearth) can be planned. A first campaign on the pilot plant, The ULCOS-BF is seen as the quickest ULCOS route erected at Tata Steel's IJmuiden steel works, took place to be implemented in the EU steel industry, because in 2011 and 2012 and, after hot commissioning tests, of its relative maturity and because it is a retrofit on has been able to operate for a sufficient length of time existing facilities: switching a BF over to ULCOS-BF to validate most of the key concepts supporting the operation requires no more than a major furnace process, short of the demonstration of the industrial relining, where the BF is made 'capture ready' by robustness of the technology, which will be explored in

> greenfield steel mill site, once its viability has been demonstrated at pilot and then demonstrator scales, which will take 10 years or more.

Direct reduction (ULCORED)

ULCORED⁴³ is the ULCOS solution for making iron Electrolysis of iron ore is a breakthrough process based on natural gas rather than coal (Figure 24). The concept that proposes to reduce iron oxides concept involves separating CO₂ out of the process gas, and is therefore also dependent on CCS with a similar in-process capture. ULCORED proposes solutions fit for on room-temperature electrowinning of an alkaline taking over the area occupied today by direct reduction solution in which ore particles are dispersed. - a technology not very much used in Europe but more in countries with access to cheap natural gas.⁴⁴ With The process has been developed from scratch during ULCORED the objective is to reduce the natural gas the ULCOS project and has reached the scale of a consumption needed to produce DRI. This is partly small-scale laboratory pilot plant that can produce 4 kg

achieved by replacing the traditional technology, reforming, by partial oxidation of the natural gas (as debugged and scaled up so it can become a candidate in HYL/Energiron). This will also substantially reduce for large-scale production, mimicking what is done capital expenditure.

might use the opportunity of the EDRP (Experimental be necessary before a pilot at a scale commensurate Direct Reduction Pilot) furnace, which LKAB is planning to those implemented for the previously analysed to erect in coming years as a complement to its EBF in Luleå. ULCORED would probably be a candidate to retrofitting existing direct reduction plants, once ULCOWIN would therefore become a candidate process its viability has been demonstrated at pilot and then route at about the time when the price of carbon-free demonstrator scales, which would also take 10 to 15 electricity becomes competitive, if this ever happens. years or more.

Electrolysis (ULCOWIN)

electrochemically, without using any direct carbon. ULCOWIN is the more mature embodiment, based

samples of pure iron. The process is currently being in non-ferrous metal production, like aluminium or magnesium, as part of two research projects that are ULCORED needs to be pilot tested first, a step that part of ULCOS II. Ten years of work will still probably process routes can be designed, erected and tested.

⁴³ Knop, K., Hallin, M. and Burström, E., ULCORED SP 12, Concept for minimized CO₂ emission, La Revue de Métallurgie-CIT, Sept. 2009 & Oct. Revue de Métallurgie, Number 10, October 2009, 419 – 421, Selected papers from 4th ULCOS SEMINAR (Part 2). 44 http://www.ulcos.org/fr/research/advanced_direct_reduction.php

of producing liquid iron directly, in a way similar to what is done in a Héroult cell, is under investigation under the name of ULCOLYSIS. Samples of iron have been produced in the liquid state, but the development path is going to be longer than for ULCOWIN.

Summary and economic viability assessment

The ULCOS process routes exhibit a number of interesting features, which have been built into them during the ULCOS I research work or came about fortuitously:

- specific CO₂ emissions are indeed reduced by 50% or more, as shown in Table 1 .
- on board the fact that the energy balance of the by energy savings and productivity improvements. whole integrated steel mill is deeply modified (the ULCOS-BF does not produce any BF gas for further The first three ULCOS technologies will have to be run use in the steel mill). This is guite remarkable, as CCS in other sectors on the contrary increases energy consumption!

- Another process, tackling the more challenging concept all fossil-fuel based processes are expected to demonstrate higher productivity than their conventional counterpart, of 20% for ULCOS-BF and possibly more for HIsarna, for example. This will need demonstrator-scale experiments to be validated.
 - the cost of avoided CO₂ associated with these same routes is about half what it would have been from applying CCS as an end-of-pipe technology, as is done in the power sector in post-combustion capture.

In terms of capital and operating costs, the situation is somewhat more complex, as there is not enough experience today to make any clear statement. What seems likely though is that the ULCOS processes are adding to the standard iron or steelmaking process energy consumption is reduced by 10% to 20%, taking functions that are not fully balanced in terms of cost

> with Carbon Capture and Storage (CCS) in order to get to specific CO_2 reductions above 50%. CCS is a precondition for these technologies, which otherwise will already at the time of their introduction be incompatible with the decarbonisation objective. Furthermore, not only are these technologies capital-intensive but they also increase heavily operational costs (CCS on the blast furnace alone would need ca. 0.15 MWh per tonne of steel).45

ABATEMENT POTENTIALS OF THE ULCOS TECHNOLOGIES

Technology	Expected potentials for direct CO ₂ mitigation effects	Soonest expectations (from a purely technical perspective)
Top Gas Recycling Blast Furnace (ULCOS-BF)	15% without CCS 60% with CCS	Laboratory: done Pilot: done Demonstrator: tbc Deployment: > 2020 onwards
Bath smelting (HIsarna)	20% without CCS 80 % with CCS	Laboratory: done Pilot: 2011-2013 Demonstrator: 2020 Deployment: > 2030
Direct reduction (ULCORED)	5% without CCS 80% with CCS	Laboratory: done Pilot: 2013 Demonstrator: 2020 Deployment: > 2030
Electrolysis (ULCOWIN)	30% with today's electricity generation mix 98% with CO2 free electricity generation	Laboratory: ongoing Pilot: 2020 Demonstrator: 2030 Deployment: > 2040

45 Lawrence Hooey, Andrew Tobiesen, Jeremy Johns and Stanley Santos (2013): Techno-Economic Evaluation of Incorporating CO2 Capture in an Integrated Steel Mill.

They add more costs but would endanger the **OTHER EUROPEAN &** competiveness of EU steel if proper mitigating policies are NON-EUROPEAN INITIATIVES not implemented.

Electrolysis is still in the laboratory phase. If successful, programmes addressing the challenge of a drastic it could be available after 2040. It is worth stressing that the power demand for this technology to substitute a although they are not as advanced as ULCOS and mid-sized blast-furnace can be estimated at about 1 would deliver results possibly many years later. GW (one nuclear reactor).

Beyond the ULCOS solutions, other directions have potential for radical change, but their development has not been considered as likely in the short or middle term by the ULCOS consortium.

They include the direct use of hydrogen, an excellent 1. Development of technologies to reduce CO_2 emissions from the blast furnace. The main reducing agent that compares favourably with coal, but which, however, has to be produced from natural intention is to control reactions for reducing iron gas or water at considerable expense of energy and, ore with a reducing agent such as hydrogen, with possibly, with associated GHG emissions: hydrogen a view to decreasing coke consumption in the BF. can be used in a shaft furnace similar to a Midrex Hydrogen would come from reformed coke oven furnace, or in other reactors. gas, amplifying its H₂ content.

Another interesting concept is based on the use of 2. Development of technologies to capture, separate biomass. The most straightforward kind of biomass for making steel is charcoal, which was used for iron and steel production over millennia before coal was used and is still a major carbon source in countries like Brazil. Using charcoal at a very large scale would involve sweeping changes in land use in tropical countries and massive international trade of the fragile For both research areas, a pilot phase on a mini-BF and pyrothermic material, which would involve a major paradigm shift in the international organisation of agriculture and trade.

existing processes for which CO₂ abatement can be optimized (e.g. use of coke oven gas instead of natural gas for direct reduction in an integrated plant).⁴⁶

There is also a number of combinations of new and POSCO in Korea runs its own programme, with various dimensions including the adaptation of CCS to the COREX/FINEX process (smelting reduction) and the development of an ammonia-based scrubbing technology. So far POSCO has set up a 1.5-Mt per year FINEX unit, which is operating stably and a new FINEX plant scaled-up to 2.0-Mt per year is being progressed. Because FINEX uses pure oxygen for coal gasification and has an in-situ CO₂ removal system, POSCO claims that CO_2 can be quite easily separated and stored using FINEX.

46 Diemer P, Killich H-J, Knop K, Lüngen H-B, Reinke M and Schmöle P (2004), 'Potentials for utilization of coke oven gas in integrated iron and steel works', 2nd International meeting on ironmaking/1st International symposium on iron ore. Vitoria, Espirito Santo, Brazil.

As already mentioned, there are also other international reduction in CO₂ emissions related to steel production,

Japan has a large national programme led by the Japanese Iron and Steel Federation (JISF) called COURSE 50 for '<u>CO₂ U</u>ltimate <u>R</u>eduction in <u>S</u>teelmaking process by innovative technology for cool <u>Earth 2050'</u>. Two research areas are being investigated:

and recover CO₂ from blast furnace gas. This targets the development of new chemical absorbents like high performance amine compounds, aiming at reducing energy consumption for CO₂ separation by absorption.

is planned by 2015–2020, followed by a demonstration phase (partly industrial) by 2020-2030. Final industrialisation should be possible from 2030 on.

covers three areas:

- produced metal and oxygen gas at laboratory scale. There are plans to launch a pilot unit with a capacity kg per day.
- 2. Hydrogen Flash Smelting (HFS). Hydrogen is used concentrates would be sprayed directly into a process work with a true flash smelter presently available. under design, expected to be commissioned in the near future.
- design phase is in progress for the construction of a related to ironmaking. 42,000-tonnes capacity demonstration furnace.

of a biomass steel production route based on of charcoal and small charcoal blast furnaces. The annual production range of these 160 existing small BFs is 70,000 to 500,000 tonnes per year and per BF. Seventy out of 160 BF are running so far, producing a total of 6 Mt per year. The Brazilian steel industry envisages an operating model that uses 66% imported and renewable energy (biomass). This model would also use charcoal fines injection in coke-based blast furnace tuyeres.

The American Iron and Steel Institute (AISI) programme A Canadian programme run by the Canadian Steel Producers Association (CSPA) has a strong focus on the use of biomass in iron and steelmaking as a substitute 1. Molten Oxide Electrolysis (MOE). Electrolysis is for fossil fuels, as biomass per capita is important in carried out with an electrolyte consisting of a this large country. In the short term, the target is to molten slag in which iron oxide is fed and dissolved, replace PCI (pulverised coal injection) with charcoal a concept parallel to ULCOLYSIS. The MIT team has injection, which can reduce the GHG emissions by 23%; experimental work is promising. In the long term, a bio-ironmaking process based solely on bio-carbon will of 4,000 Ampere to produce liquid iron at a rate of 73 be developed. Research is being conducted into areas such as bio-cokemaking, using a coal blend mixed with charcoal.

to replace carbon as a reducing agent. Iron ore The rationale of all these programmes is similar to that of ULCOS. Nevertheless, considering the fact furnace chamber. This promising process concept that the ULCOS approach has now moved to the pilot was tested in the laboratory at Utah University. plant phase, all these programmes are less advanced There are plans to move from basic research to down the path of making breakthrough technologies

Process developments are also underway related to near-net-shape casting. European equipment 3. Paired Straight Hearth Furnace (PSHF). AISI members manufacturers are at the forefront of more together with the US Department of Energy are conventional thin slab casting technology. Albeit developing the PSHF, a high-productivity, low- quite significant in terms of energy optimisation and energy ironmaking unit than can process pelletised minimization at the casting/rolling interface, such steel plant wastes as well as virgin iron materials. technologies have a very limited impact at the scale of After preliminary tests a detailed engineering the steel mill, where CO₂ emissions are overwhelmingly

The Brazilian steel industry continues its development LOW CARBON STEEL ROADMAP 2050

sustainable plantations of eucalyptus trees, production Various studies have striven to model the CO_2 emissions of the steel sector in relation to abatement technologies and climate policies. In particular, the EU's Joint Research Centre (JRC) developed the ISIM model⁴⁷, a global simulation model able to analyse the evolution of the industry out to 2030, focusing on steel production, demand, trade, energy consumption, energy (coke and mineral coal) and 34% national CO₂ emissions, technology dynamics, and retrofitting options.

> This model has also been used in the context of the ULCOS programme to project the emergence of ULCOS technologies under different scenarios.48 To this end, existing steelmaking technologies as well

47 I. Hidalgo, L. Szabo, J-C Ciscar, A Soria - (2005) - Technological prospects and CO₂ Emission Trading Analyses in the Iron and Steel Industry: A Global Model. 48 E. Bellevrat, Ph. Menanteau (La Revue de Métallurgie – CIT- 2009), Introducing Carbon Constraints in the Steel Sector : ULCOS Scenarios and Economic Modelling.

retrieved from waste gases, CO₂ performance will be consistent with each other. heavily influenced by the system boundaries and the assumptions pertaining to the CO₂ intensity of the purchased electricity. In light of this, it was necessary as a first step to provide an appropriate accounting framework for a fair comparison between technologies and then feed the results into simulation models.

In summary, the study models the cost-effectiveness of the market roll-out of abatement technologies applicable to the main steelmaking processes. These are divided into two categories: best available technologies (BAT⁵²) and innovative technologies.

Although these models to some extent capture important aspects of potential responses to the global and regional carbon constraints, they follow a 'topdown' approach and as a consequence their results lack legibility in the context of an in-depth analysis of The analysis considers well-established alternative the technical-economical CO₂ mitigation potentials in the EU steel industry. Instead, 'bottom-up' approaches innovative technologies category. It also assumes CCS should be privileged so as to identify precisely what the EU steel sector is likely to achieve in terms of CO₂

reductions by 2050, the related costs, their impact on As regards the development of the EU steel market, global competitiveness, and, how to get the conditions the study assumes that the EU will become selfright to make the move to carbon-leaner technologies sufficient in steel by 2030, with an annual growth rate a success.

Following a series of publications on the topic, the JRC to 47% in 2030. In the light of the assumptions derived published in November 2012 a study on the Prospective from the BCG Steel Consumption and Scrap Model, Scenarios on Energy Efficiency and CO_2 Emissions in these figures must be considered as rather optimistic. the EU Iron & Steel Industry.⁵¹ The study analyses Each year the model makes a cost-benefit analysis the impact of technology innovation and diffusion on for each facility of all possible best available and the EU steel sector's energy and carbon efficiency. It innovative technologies. Based on historical data, the models the EU steel industry so as to identify potential improvements up to 2030 from a cost-effectiveness point of view, following a 'bottom-up' approach which Different scenarios are defined, including three can be regarded as the first of its kind.

Group to complete the picture out to 2050. BCG teamed 2020 and €39 in 2030. In the alternative CO₂ scenarios, up with the Steel Institute VDEh to determine the it would reach \in 100 and \in 200 per tonne of CO₂ in 2030. possible mitigation potential of CO₂ emissions resulting from the production of steel in the EU. The potential The main findings of the study are described below. of existing or projected abatement technologies (so-

as the innovative technologies investigated under called innovative or 'breakthrough' technologies) the programme were analysed and compared in were investigated from a technical as well as from an terms of capital expense, operating costs⁴⁹ and CO₂ economic point of view. Albeit being built on different emissions.⁵⁰ Since steelmaking involves electricity and sets of assumptions and data and looking at different fuel consumption, either purchased from outside or time horizons, these two studies lead to conclusions

45

THE 2030 MILESTONE: FINDINGS OF THE JRC STUDY

steelmaking technologies like pre-reduction in the will be available from 2020.

of EU finished steel production of 1.8%. An increase in scrap availability would drive the share of EAF steel up annual number of retrofits is limited to six.

different developments for the carbon price. The baseline scenario considers that the CO_2 emission In parallel, EUROFER contracted the Boston Consulting price rises from €11/tonne of CO₂ in 2010 to €25 in

- 49 J-P Birat, J-P Lorrain (La Revue de Métallurgie CIT 2009), The "Cost Tool": operating and capital costs of existing breakthrough routes in a future
- 50 J-P Birat, J-P Lorrain, Yann de Lassat (La Revue de Métallurgie CIT 2009), The "CO2 Tool": CO2 emissions & Energy consumption of existing &
- 51 N. Pardo, J.A. Moya, K. Vatopoulos (2012), Propspective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry (JRC

studies framework

breakthrough steelmaking routes.

Scientific and Policy Reports).

⁵² The notion of BAT in this report refers to existing technologies which under certain circumstances can lead to CO₂ savings.

Primary steel production route

consumption and specific CO₂ emissions in the baseline scenario (with an allowance price of \in 39 An abatement cost of \in 25 would add marginal costs in 2030). This scenario involves the uptake of CCS at a level close to the net operating margin. Under the applied to power plants and the Top Gas Recycling EU ETS, this would be enough to push steel makers technology (ULCOS-BF) as from 2021. It relies on very to reduce their production and abandon market optimistic assumptions, given the current state of the share to foreign competitors as such costs cannot development of these technologies.

respectively 8% and 15% for energy consumption and sustainable in the context of unilateral climate action CO₂ emissions,

In the €200 scenario the reduction would be This does not mean that carbon pricing does not CO₂ emissions.

Secondary steel production route

in the case of the baseline scenario to respectively 6% and 11% for specific energy consumption and specific CO_2 emissions. No further improvements are attained A follow-up analysis⁵³ with the model used in the with either the \in 100 or \in 200 carbon price scenarios.

through two alternative scenarios in which the cost of natural gas and electricity and is therefore only costeffective with low natural gas and electricity prices. This is probably due to the fact that the model seems **Remarks** to ignore the costs pertaining to the investments needed in new EAF to melt the DRI production.

allowance prices at the level of €100 or €200 don't bring the steel industry and technical constraints render usually depend on the size of the investment. carbon pricing ineffective.

However it has to be noted that such carbon prices The reduction from 2010 to 2030 would amount are more than enough to drive the sector out of the to respectively 11% and 14% for specific energy market. On average, a tonne of steel costs about €500.

be passed on through higher sales prices because of international competition. Abatement costs of the In the \in 100 scenario the reduction would be order of magnitude of those used by the study are not by the FU.

respectively 7% and 19% for energy consumption and work for other sectors, but rather points out that the implementation of the most effective best available technologies and the most promising innovative technologies would lead to disproportionate costs The reduction between 2010 and 2030 would amount in the steel industry, putting the industry at risk of relocation.

JRC report, shows that, using the same values than in the baseline scenario, but removing the constraint The study also analyses the increase in fuel prices that limited the number of retrofits and changing the value of the decision-making criterion about new fuels would respectively double and increase fivefold investments, the reductions in energy consumption in 2030 compared to the baseline scenario. This leads $and CO_2$ emissions feasible could amount up to 18% to a modest penetration of direct reduction, which is at and 65%, respectively. However, these values include odds with the BCG/VDEh findings and rather counter- the same optimistic assumptions than the JRC report intuitive, as the direct reduction process is based on about the early market roll-out CCS and Top Gas Recycling technology (BF-TGR).

As previously pointed out, the JRC study horizon is not in line with the expected development of technologies such as CCS and TGR. This tends to overestimate The study concludes that, as expected, higher energy the abatement potentials of the sector up to 2030. prices and higher allowance prices lead to a higher CO_2 Similarly the estimated reduction in specific CO_2 emission reduction. It is noteworthy, however, that emissions of BAT technologies often gives very optimistic figures. On the other hand the assumptions about much more CO_2 reduction than the baseline in terms of payback time and number of retrofits could scenario. The rather limited abatement potential of be seen as rather conservative as these parameters

EU27 STEEL CO₂ EMISSIONS FOR THE BASELINE YEARS 1990 AND 2010

following section.

THE 2050 HORIZON: THE BCG/VDEH APPROACH

For their study, BCG/VDEh established as a first step a technology roadmap based on a number of scenarios. The second step was to analyse what the various technology scenarios mean from an production, purchased coke and pellets. economic perspective. It can be concluded from the findings of the study that the EU steel industry, under certain conditions, is able to make significant further contributions to CO₂ mitigation in Europe and 223 Mt in 2010. This was mainly due to a partial shift worldwide.

Establishing a baseline

reference year) and 2010. The system boundaries cover ironmaking, steelmaking and hot rolling.

Against this background and in order to best assess As for primary steelmaking, system boundaries also how much CO₂ savings BAT and innovative technologies include CO₂ emissions pertaining to waste gases, can deliver and under what conditions, it is necessary irrespective of how they are being used. This relies to follow a slightly different approach by building up on the assumption that integrated plants are selftechnology scenarios first and then analysing them sufficient in electricity. In reality, overall primary from an economic perspective. This approach would steelmaking in Europe is a net importer of electricity. be complementary to the JRC study and broaden However this approximation can be considered as the scope of the investigation. It is described in the realistic for the system boundaries considered in the study. It also enables circumventing the problem of the lack of detailed data on waste gas usage.

As regards secondary steelmaking and CO₂ pertaining to electricity purchased from the grid, the CO₂ factor of the national grid is used.

The following other indirect emissions related to steelmaking are included in the scope: oxygen and lime

CO₂ emissions from EU27 steel production fell by over 25% between 1990 and 2010, from 298 Mt in 1990 to from primary to secondary steelmaking (accompanied by a contraction of output), efficiency gains and, to a lesser extent, to the decrease of specific CO₂ emissions The study uses two reference years: 1990 (Kyoto from electricity generation (Figure 25). Over the same period, specific CO₂ emissions decreased by about 15% from 1.508 to 1.293 tonnes CO₂/tonne of steel.

⁵³ J.A. Moya, N. Pardo (Journal of Cleaner Production - 2013), The potential for improvements in energy efficiency and CO₂ emissions in the EU27 iron and steel industry under different payback periods

Technical CO₂ emission reduction potential up to 2050

As for the 2050 horizon, the BCG/VDEh study projects that the EU steel market will grow by 0.8% annually leading to EU crude steel production of 236 Mt in 2050. As in the JRC study, this is based on the assumption that the EU steel market will reach self-sufficiency by 2030 (EU steel consumption=EU steel production, this Maximum theoretical abatement with CCS: assumption 'neutralizes' variations in trade flows). However, according to the annual market growth rate forecast by BCG/VDEh, steel lies significantly below the JRC projections. The stock of scrap available within the EU is projected to increase from 96 Mt in 2010 to 136 Mt in 2050, the share of secondary steelmaking (Electric Arc Furnace Route) rising to 44% by 2050. Here again the scrap model used by BCG/VDEh gives less As under the CCS scenario, all iron-ore based study.

review was carried out on different levels:

- decarbonisation of the power sector,⁵⁴
- best-practice sharing;
- implementation of incremental technologies (mainly process optimisation and retrofits);
- shift to alternative technologies (this concerns in **Economic CO₂ emission reduction potential up to 2050** particular primary steelmaking);
- application of innovative technologies (in combination with CCS or not).

benefit analysis under different energy price scenarios.

The take-up of new technologies was modelled through the use of S-shaped curves. This modelling exercise led to a number of abatement scenarios:

- Baseline scenario: this scenario assumes for 2050 to 305 Mt CO₂ emissions in 2050.
- Implementation of best-practice sharing and 271 Mt CO₂ emissions in 2050, the share of Scrap-EAF steel production reaching 44% in 2050. This includes power sector.

- Maximum theoretical abatement without carbon capture, use and storage (CCS): the partial shift from the conventional BF-BOF to DRI-EAF route leads to 184 Mt CO₂ emissions in 2050. This scenario also assumes the implementation of the incremental technologies deemed as economically viable.
- considering full deployment of CCS in primary steelmaking, the implementation of best-practice sharing and incremental technologies as well as the partial decarbonisation of the power sector, the steel sector's emissions would amount to approximately 130 Mt CO₂ in 2050.

optimistic values than those put forward in the JRC $\,$ steelmaking technologies have the same CO₂ intensity (ca. 0.7 tonne CO₂/tonne of steel), it can be concluded that the retrofit of the existing blast furnaces with Under these assumptions, BCG/VDEh conducted a the top gas recycling technology (TGR) is the most technology review in order to identify the most relevant sensible option, should CCS become widely available potential CO₂ abatement scenarios in the industry. The at competitive prices across the EU. In this context it is worth pointing out that full deployment of CCS would lead to a theoretical reduction of ca. 60% in 2050 compared to 1990, still falling short of the EU's 80% aspirational objective.

The analysis carried out further by BCG/VDEh on both maximum theoretical abatement scenarios leads to the conclusion that, unless the legislative and economic conditions prevailing today change radically, Incremental technologies were subject to a cost- they are neither realistic nor economically feasible.

The shift from the conventional BF-BOF route to DRI-EAF would entail CO₂ abatement costs in the range of €260-€710/tonne of CO₂ (without considering decommissioning costs). This figure is unsurprisingly high as it supposes abandoning existing installations the same split between the BF-BOF and Scrap- for new ones with higher operating costs (the DRI-EAF routes and the same CO_2 intensities as in 2010 EAF route is particularly intensive in natural gas and (including for the power sector). This scenario leads electricity, both input factors being comparatively costly in Europe).

increasing scrap availability: this scenario leads to Furthermore, the TGR technology has only been applied in a pilot plant so far. The benefits have yet to be demonstrated at industrial scale. According to the effect of the decrease of the CO₂ intensity of the project data, the corresponding abatement costs are expected to amount to at least €50/tonne of CO₂, subject to validation in demonstration-scale tests.

are highly sensitive to site-specific conditions.⁵⁵ This \circ on EU steel's CO₂ intensity is summarized in Table 2. technology doesn't lead to any competitive advantage in the absence of carbon costs. High coking coal It should be noted that under the economic scenario, prices may however have an alleviating effect on the CO_2 savings up to 2030 are offset by the effect economics.

As regards CCS the study also points to a number in 2010. This has to be compared with the more positive of difficulties, in particular public acceptance and findings of the JRC, which estimate the improvement the subsequent limited geological storage capacity over the same period at 14%. This is partly explained (integrated sites would have to store about 2 to 8 Mt by the rather optimistic technology development CO₂ annually), CO₂ transport and storage costs.⁵⁶

To sum up, these scenarios would make steel wholly uncompetitive unless the current and reasonably a number of 'incremental technologies' compared to foreseeable conditions change radically over coming the technology review carried out by BCG/VDEh. decades.

The economic scenario identified by BCG/VDEh gives DEEPER CO₂ CUTS projected steel sector's emissions for 2050 of about $258 \text{ Mt CO}_{2}^{57}$ (-13% compared to 1990). The drivers of Going beyond the maximum 60% emission reduction the reduction are:

- continued decarbonisation of the power sector;
- increased scrap availability; best-practice sharing;
- implementation of cost-effective incremental technologies.

The economic scenario means a 10% reduction in with waste gases in integrated plants. Applying the CO₂ intensity by 2030 and 15% by 2050 compared to CCS technology to each single stack is in principle 2010. This shows that the remaining potential for imaginable (with some adaptation of the heating improvement is low because of the already high level process e.g. increase of the oxygen rate). of optimization of existing processes.

STEELMAKING CO₂ INTENSITY PATHWAYS UP TO 2050 (COMPARED TO 1990)

1 This scenario assumes CCS will be available only after 2030	
Economic scenario	
Maximum theoretical abatement with CCS	
Maximum theoretical abatement without CCS	
Implementation of best-practice sharing and increasing scra availability scenario	
CO ₂ intensity reduction compared to 1990	

55 Lawrence Hooey, Andrew Tobiesen, Jeremy Johns and Stanley Santos (2013): Techno-Economic Evaluation of Incorporating CO₂ Capture in an Integrated Steel Mill.

56 Typically storage costs vary from €1-7/tonne of CO₂ for on-shore storage and €6-20/tonne of CO₂ for off-shore storage. Transport costs amount to ca. €0.030/tonne CO₂ km for pipeline transportation (source: Zero Emission Platform, 2011, The Costs of CO₂ Transport, Post-demonstration CCS in the EU, and The Costs of CO₂ storage). Access to CCS will be unaffordable for companies which don't have a nearby storage site. 57 This figure corresponds to about 0.7% of the current global emissions.

49

The numbers show a high contingency (ca. 100%) and The impact of the scenarios investigated in the study

of production growth. As a consequence, the total emissions of the sector in 2030 would be 7% higher than assumptions of the JRC study. It assumes that the TGR and CCS technologies will be available from 2020 and that there is higher overall mitigation potential for

projected in the BCG/VDEh study would require another level of technological development.

In the BF-TGR scenario, further CO₂ abatement could be envisaged at the level of the heating units (stoves, oven, reheating furnaces). These units are currently mostly fired with natural gas (or LPG) or alternatively

	2030	2050
ър	-19%	-24%
	-31%	-48%
	-22% ¹	-63%
	-22%	-28%

⁵⁴ The BCG/VDEh study envisages a decarbonisation path along the lines of the IEA projections (IEA Outlook 2012).

TECHNICAL CO2 INTENSITY PATHWAYS UP TO 2050

emissions pertain to steelmaking) spread over a large number of emission sources.

It's also worth pointing out that the application of the (hydrogen obtained from electrolysis), but at the BF-TGR technology reduces the volume of waste gases expense of huge amounts of energy. available, as all the blast furnace gas is captured and recycled in the blast furnace. As a consequence, the Technologies such as HIsarna or ULCORED, subject recovery and use of the remaining waste gases (coke oven gas and basic oxygen furnace gas) for heating purposes becomes even more crucial, leaving little combined with CCS. room for deployment of electrification of the heating systems in integrated steel plants.

gasification of biomass) could to some extent provide an alternative. However, sustainability issues raised The electrification of heating devices could also be by the use of biomass would have to be addressed, particularly in view of the huge quantity of energy involved.

This would lead to disproportionate abatement costs Several projects are underway involving the use of given the relatively low CO₂ volumes (as most of the hydrogen as the main reducing agent in primary steel production (injection into the blast furnace or direct reduction process). Maximum CO₂ savings can be achieved through the use of CO_2 free hydrogen

> to the outcome of the demonstration phase, could potentially lead to CO_2 savings of about 80% when

The full decarbonisation of the power sector would also lead to further CO₂ cuts, in particular at the level The use of biogas or syngas (resulting from the of the EAF. Under this kind of scenario, another option would be steelmaking via electrolysis (ULCOWIN). considered. This technology is currently used to process small batches of steel in short series (in induction or resistance furnaces). For the time being, technical limitations make these technologies incompatible with the productivity requirements of the sector.

CONCLUSIONS:

LOW CARBON STEEL ROADMAP 2050

Depending on the assumptions, the scenarios and the models used, the steel sector's CO₂ emissions pathway through to 2050 will have various profiles. Future energy prices and climate and energy policies at the global or regional level, because of their potentially very high distortive effect, will impact trade patterns and play a prominent role in technology choice. The best example is the shale gas revolution in the United States, which is already attracting investment in new direct reduction capacity. This will give a significant advantage to the US steel industry and at the same time lead to a decrease of its CO_2 emissions independently from any regulatory initiative.

Equally, the steel industry in Europe would in future look totally different under a well-balanced international climate agreement than it will look under a very strict unilateral EU carbon policy.

Beyond the complications inherent to the setting of assumptions, all studies converge towards the following key drivers for the future EU steel CO₂ footprint:

along with the increase of secondary steelmaking; ■ incremental technologies could, to a relatively modest extent, contribute to the reduction of emissions, in particular as regards the BF-BOF route; ■ more ambitious CO₂ cuts require a change of

51

• more scrap will be available in the future and will lead to an increasing share of secondary steelmaking, thereby contributing to CO₂ savings in the steel industry;

• the continuing decarbonisation of the power sector will also lead to significant CO₂ savings in the industry,

technology in primary steelmaking e.g. resorting either to direct reduction or retrofitting the existing BF fleet with top gas recycling technology; BF-TGR retrofit shows more favourable economics than the DRI-FAF route:

• combining these technologies with CCS would bring the sector's specific CO_2 emissions down further to a level of about 60% below 2050 compared to 2010.

would need the deployment of technologies like maximum CO₂ saving potential achievable in a costtechnology or combination of technologies is most likely to emerge.

For illustrative purposes, the steel sector's emission reduction trajectories derived from the model The economic scenario could in principle also give rise developed by BCG/VDEh are shown in Figures 26 and 27.

current sustained price trend for these commodities industry alone would only weaken it further. continues. Furthermore the technology would require the replacement of the existing well-functioning and In summary, even if the necessary technologies it is also worth stressing that the sector is currently such a scenario.

retrofitting of all existing blast furnaces with TGR gradually be forced out of Europe. and CCS, hence implying that both technologies are confirmed as technically feasible on large-scale blast furnaces and commercially available across the EU at competitive prices. If not, such a scenario would raise dramatic competitiveness concerns because of the costs involved, a situation that would be exacerbated, if the EU pursues its unilateral climate policy. This level of abatement could also be achievable by applying CCS technology to direct reduction. However this option would be far more costly than retrofitting the existing BF plants.58

Bringing the steel sector's emissions down further In the economic scenario which pertains to the HIsarna (smelting reduction), ULCORED (direct effective way, the steel sector's emissions would reduction) both connected to CCS or hydrogen-based decrease by about 13% in 2050 compared to 1990. This reduction, should they prove technically feasible. Under scenario is particularly relevant for the 2030 milestone, a fully decarbonised electricity scenario, electrolysis as the CCS and TGR technologies are unlikely to be in could also be envisaged as a potential solution. From widespread use by then (in any case it is fair to assume today's perspective, it is not possible to predict which that CCS application at industrial scale will be applied in priority to the power sector). It leads to a 10% reduction in CO₂ intensity by 2030 and 15% by 2050 compared to 2010.

to competitiveness issues because, as with the two theoretical maximum abatement scenarios, it implies the decarbonisation of the power sector. This, in itself, According to the BCG/VDEh model, direct reduction as experienced today, could lead to distortions of technology could bring about an emission reduction competition vis-à-vis competitors in energy markets of about 38% by 2050 compared to 1990. However not subject to such constraints since power prices as it needs a lot of natural gas and electricity, it would rise abnormally. Steel is a globally traded has to be regarded as economically unviable if the commodity and CO₂ abatement costs borne by the EU

optimized integrated installations. In this context, were available in good time, their deployment would not be affordable in the absence of an international facing and will face in the future substantial costs to agreement providing a level-playing field. As a adapt installations in accordance with the Industrial consequence, if future EU climate policies impose a Emissions Directive (IED). Such investments also have uniform carbon price across the economy regardless a long life cycle. They would become meaningless in of the CO₂ reduction potential that is technically and economically achievable by the steel industry, the The maximum CO_2 emission reduction achievable by pressure on EU steel production would be such that the EU steel industry by 2050 compared to 1990 levels Europe's steel industry and, as a consequence, large would be about 60%. This, however, would require the parts of the entire manufacturing value chain would

^{. 58} The BF-TGR technology would also lead to a sharp increase in hot metal productivity. Not all the exiting BF would be needed to meet the expected demand over the coming decades.

THE ROAD TO 2050: CHALLENGES, OPPORTUNITIES AND CONDITIONS FOR SUCCESS

THE CORE POLICY MIX: CARBON PRICE, ENERGY EFFICIENCY AND TECHNOLOGY POLICIES

REFLECTIONS ON THE EU CLIMATE STRATEGY

The steel roadmap strives to identify the maximum level of CO₂ abatement that the steel sector would be able to deliver in the 2050 horizon on the basis of what can reasonably be expected in terms of technological development. The outcome of this emissions by 80% to 95% by 2050 compared to 1990. A number of technologies could help make partial demonstration phase. None of them is cost-effective. This shows how important it is that each industrial a way to reconcile the abatement technically achievable needs specific treatment. with the top-down 80-95% reduction objective.

The EU ETS is being given a central role in the decarbonisation of the EU. It provides a harmonised framework to reach a predefined CO₂ reduction target. It is technology-neutral and lets the market decide on the abatement techniques. It has yet to be demonstrated how it can deliver sweeping technological changes.

'bottom-up' approach is at odds with the conclusions A parallel can be made with the deployment of of the European Commission Roadmap for moving to renewable energies and CCS. Renewables are costly a competitive low carbon economy in 2050: there is no and encouraging them through the EU ETS would have cost-effective path for the steel industry to reduce its required placing the cap at a dangerously low level that would have resulted in the destruction of most of the economy before the first erg of renewable energy progress towards the goal. Some of them have yet had entered the market. Instead a renewable target to be proven technically feasible or go through the was set outside the scope of the EU ETS. The same can be said for CCS. The use of CCS implies abatement costs which are not compatible with the current CO_2 sector develops its own 2050 roadmaps in order to find objective. CCS is an option for the longer term and The development of breakthrough technologies for Furthermore the benefits from the expansion of steelmaking will not be triggered by a carbon price. The uncertainty affecting the carbon price – which is inherent to all markets – is not compatible with the development and deployment of breakthrough technologies. For that to happen, a different set of policies and incentives has to be set up, over a time frame consistent with the long lead times for investors demonstrating that this money could characterising such technologies.

The EU ETS has to co-exist with other policies, all must EU-based investors, which has sometimes had very be fit for purpose and inevitable overlaps need to be detrimental consequences for EU producers unable addressed consistently.

Ambitious long-term objectives require a drastic particular in terms of job creation, have been widely change of philosophy and the reconsideration – sectorwise – of the place of the EU ETS in the EU's climate and energy arsenal.

In the long term the additional cost of carbon pricing may reduce the ability of companies to cover their capital costs, particularly in the case of overambitious CO₂ reduction targets.

RENEWABLES

The Renewable Energy Directive adopted in 2009 sets the overall Renewable Energy Strategy lacks clarity binding targets for renewable energy generation. The and coherence. Inefficiencies stemming from the objective is to reach a 20% share of renewable energy in multiplication of inadequate support schemes and the the EU's overall energy consumption by 2020. Member States have to reach individual targets for the overall

share of renewable energy in energy consumption. The adoption of the current policy framework of legally binding targets has resulted in the strong growth of renewable energy.

By increasing the rate of renewable energy, the EU support necessary, thereby also reducing distortions is diversifying its energy supply and decreasing its within the single energy market and making support dependency on fossil fuels, thereby increasing its schemes converge. resilience to energy price shocks. However, as these energy sources are expensive, it is not clear whether their deployment can be achieved at competitive energy – and, more specifically, – power-prices over the long-term. and cost-effective. Renewable support schemes The evidence so far is that support for renewables has should be designed so as to give an appropriate level increased energy bills for consumers. The amount of the of support reflecting the true costs of generation and cost increase not only depends on the type of renewable avoiding creating windfall profits. energy source supported, but also on the accompanying administrative burden, the need to maintain conventional capacity as back-up and particularly on how the support scheme is designed, as it can lead to overcompensation.

More cooperation between Member States is needed with a view to making renewable policies transparent 55

renewable energy in other areas like employment are not clearly established. The money spent by taxpayers and energy users in renewable energy support schemes is money that cannot be allocated to other parts of the economy. In some cases inadequate support schemes can lead to abnormally high returns be better spent elsewhere. In addition subsidies have attracted investors into the market, but not only to cope with cut-throat competition. The benefits of renewable deployment for the EU economy, in exaggerated.

On the other hand, support for renewables is needed to foster the maturing of the technologies and to allow them to reach grid parity. Renewables are also likely to put downward pressure on energy wholesale prices. As CO₂ emissions avoided by the renewable energy target are widely captured by the EU ETS, the increase in the share of renewable energy also pushes the price of FU carbon allowances down

As energy policy is governed by the Member States, overlaps with the EU ETS have to be addressed.

As an ultimate objective, renewables should be able to compete on the market and support schemes should be phased out as soon as possible. Having a fully functioning energy market would in principle facilitate the integration of renewables and reduce the level of to additional costs that impair the competitiveness untapped potential due to technical and economic of energy-intensive industries exposed to global limitations (low temperature waste heat sources) or competition, exemptions from energy taxes or other the unfavourable regulatory framework (conversion of renewable support mechanisms should continue to be waste gases into fuels). allowed.

ENERGY EFFICIENCY

Energy-efficiency is a key to competitiveness.

The 'one-size-fits-all' approach of the Energy Efficiency directive, which imposes a pre-defined level of energy savings to be achieved among a pool of users, is not fit for purpose for heavy industries like steel. First of all, coherent policy package with no overlaps giving clear fuel and power usage in the steel industry is covered directly or indirectly by the EU ETS directive. The fact **u**nder certain circumstances, sector-specific that investments in energy efficiency have to respond to two sets of obligations creates confusion and hinders participants from making optimal investment decisions. The conflicting rules could eventually lead to investments in energy efficiency which are not the cheapest on the market but dictated by the application of the energy efficiency obligation schemes. It's also worth stressing that the Eco-design directive also has a bearing on energy efficiency to some degree. To rectify **=** in particular, the recovery of important quantities this situation the EU's energy efficiency policy should be focused on tapping energy efficiency potentials which are not captured by the EU ETS. It should focus not only on energy use not regulated by the EU ETS (e.g. transport and households), but also on measures I funding remains an important issue, as in general within the EU ETS relating to limited savings potentials and for which the economics are often unclear. Carbon pricing – which is inherently volatile – does not provide the right incentive for this type of investment because the main objective of the EU ETS is to reduce CO₂ emissions in absolute terms, not decrease the specific energy consumption of an industrial process. Therefore improving the sector's competitiveness by **CARBON CAPTURE AND STORAGE** reducing energy consumption through cost-effective investments in energy efficiency requires specific CCS is an end-of-pipe technology. As such, it will incentives.

and energy recovery. Steelmaking sites strive to make compared to other abatement techniques.

As long as the EU Renewable Energy Strategy leads the most out of energy flows. However, there is still

In general, the gains from energy-efficiency investments are difficult to appraise, making the economics highly uncertain and hence leading to funding issues. Financial instruments and supporting schemes should be set up in order to provide access to capital.

Some general recommendations can be drawn from recent experiences:

- incentives, focusing on cost-effective measures;
- incentives give better results. In the steel industry for example, CO, emissions do not decrease in a linear way with energy efficiency. This is due to the fact that process CO₂ emissions would occur anyway, regardless of how waste heat or waste gases are being recovered. Therefore bespoke approaches should be preferred, e.g. incentives through voluntary agreements;
- of low grade industrial waste energy (waste gases, heat and pressure) should be promoted through incentives similar to those for renewable energy generation;
- capital is accessible for short pay-back periods and therefore for projects with big energysaving potentials. Public funding or private-public programmes enable the financing of projects which are not eligible for regular bank loans.

increase operating costs. Unlike investments in energy efficiency which give a competitive advantage In this regard, voluntary agreements have been to companies in terms of lower energy costs, CCS relatively successful and could be used as basis will not make steel companies more competitive, to address more focused energy efficiency issues. especially not in the case of unilateral climate action Voluntary agreements should be promoted with by the EU. However, in the context of global action and bespoke incentive schemes aimed at overcoming the in a world with no distortive carbon policies, CCS could technical and economic hurdles to energy conservation in the future represent a relatively cheap alternative In the face of strong public acceptance concerns Global competition in many EU countries, storage sites might not be available throughout the EU. In order to avoid distortions to competition within the single market, have no or little environmental benefit, but it would CCS infrastructure must be such that it provides equal access to all companies, even those located in areas industries exposed to global competition. Any policy with no storage site nearby.

CCS faces in many aspects similar challenges to to carbon leakage. those faced by renewables and more generally by breakthrough technologies. It requires big risky Financing upfront investments in research and development At this point in time, CCS for industrial applications and demonstration-scale projects, as well as requires massive funding. Only through continued funding in the deployment phase. Carbon demonstration-scale projects can CCS overcome the pricing – mainly because of the high uncertainty of the public's concerns. Given the high uncertainty in terms revenues it is able to generate is insufficient to lead of the regulatory framework, environmental and to the widespread deployment of this technology. health & safety aspects as well as liability surrounding The absence of any demonstration-scale CCS project such investments, financing must come from public in the first NER300 funding round shows clearly that authorities. The supply side of CCS needs planning investors are not willing to bear the majority of the certainty. Carbon pricing under the EU ETS is unlikely costs of such high risk investments. This is particularly to meet this fundamental requirement. As a global true for CCS for industrial applications such as the leader in the fight against climate change, the EU technologies envisaged under the ULCOS programme, must provide resources which are consistent with its which will have a much more modest development, objectives. if successful, than CCS in the power sector. As a consequence, the financial risk is distributed over a Competitive access to CCS within the single market limited number of players. EU Member States must CCS must be affordable and accessible to all, regardless secure the funds required for the demonstration and of the storage locations. This is only possible via the subsequent deployment of commercially viable CCS creation of fully integrated CCS infrastructure with infrastructure: 100% public funding is a prerequisite for sufficient capacity to make it competitive. success.

public awareness about and acceptance of CCS. This is the key to gaining the support necessary to go ahead Gas fermentation provides a novel technological with the smooth transposition of the CCS directive and solution for the sequestration of carbon into fuels to ensure environmentally safe geological storage of and high-value chemicals. Biological processes CO₂.

The size of the investments and operating costs, or the streams such as industrial flue gases from steel mills level of the carbon price needed to incentivize them is and processing plants, as a nutrient source for biomass simply not affordable for to the steel industry in the growth and subsequent product synthesis – in effect context of unilateral action. CO₂ costs would be fatal to the sequestration of carbon into new products such as the intensive iron-ore based route, while the EAF route chemicals and fuels. would be hit hard by raising power prices.

In order to be successful, EU CCS policy must take into outside the food value chain and mitigate carbon account the following aspects:

Furthermore, more efforts should be made to raise **CARBON CAPTURE AND USAGE**

have successfully demonstrated the application of this process at industrial scale by using carbon-rich gas

Climate change is a global issue and must be addressed globally. Not only would unilateral action by the EU lead to increased direct and indirect CO₂ costs for aimed at promoting CCS has to be accompanied by mechanisms offsetting the costs for industries prone

Such processes are of value as they operate completely emissions from industry without the need for direct or indirect land use change.

focus primarily on the nature of the input gas stream. IPCC's maximum 2 degrees global warming objective. More generally an appropriate set of incentives should be put in place to promote the sequestration of CO₂ Market-based instruments and more generally carbon into products. The prospects of such technologies have first to be analysed and confirmed as meaningful in a CO₂ mitigation context.

INTERNATIONAL COMPETITIVENESS OF THE EU STEEL INDUSTRY

addressed through a coordinated global response. The UN Climate Change Conference in Durban in 2011 clearly recognised the need for a global approach. Governments agreed in Durban to work together on approaches – will have to take over. a legal framework to deal with climate change for the years beyond 2020.

on board.

International climate negotiations

A meaningful, legally-binding global agreement with players. robust rules to monitor progress in CO₂ emission reduction will be instrumental in winning the fight **Competitive energy prices** against climate change. The rules will have to be designed so as to restore a level-playing field for to avoid distorting trade flows as far as possible.

of 1.7 by 2050.⁵⁹ Most of the demand increase will energy prices. be concentrated in emerging countries, in line with demographic development, growing infrastructure The fact that EU policies have led to higher energy prices needs and the reduction of poverty. In 2020 the EU has to be fully addressed. This is particularly important for will account for about 11% of global CO_2 emissions. the EAF route which is highly intensive in electricity and Unilateral action by the EU is meaningless in terms natural gas and which is set to play an ever important role of the fight against climate change if other developed in the EU steel production mix since the amount of scrap countries and major developing countries do not available in Europe is predicted to increase steadily over commit to similar CO₂ reduction targets. On the other time. As the energy price gap with competing regions is hand setting a firm cap on developing nations' CO_2 widening, EU policies should be designed in such a way emissions hardly seems feasible.

Unfortunately, these technologies were unknown at Given the anticipated steady CO₂ emission growth rate the time of writing biofuels legislation. Technology in developing nations in the decades to come, there providers that use gases from industrial applications is pressing need to invest in energy efficiency and are also facing challenges as legislators/regulators CO_2 -lean infrastructure worldwide in order to meet the

> pricing could provide effective incentives to achieve CO_2 emission abatements where they are the cheapest. They can also potentially promote the development and deployment of low carbon technologies without if designed properly – harming the competitiveness of industry at local and international level.

However, over the long-term, carbon pricing might Climate change is a global issue which has to be not be sufficient to foster the development and global deployment of the breakthrough technologies indispensable to achieving deep CO₂ cuts in the steel sector. Other policies – maybe based on sectoral

Until an integrated and globally effective carbon regime providing an equal footing to producers of EUROFER welcomes the continued efforts by EU globally traded goods is enforced, the EU should refrain institutions and the EU Commission in particular to from adopting unilateral climate targets. As in the case get other major developed and developing economies of the 2020 climate and energy package, the EU's CO_2 reduction objective should be dependent upon the conclusion of an international climate agreement and be aligned to the commitments of the other major

Future EU policies should be aimed at reducing the gap with the EU's main competitors in terms of energy industrial sectors exposed to global competition and prices. Although the completion of the internal energy market is expected to stimulate competition within the internal market and thereby have a positive impact on Global steel consumption is set to grow by a factor prices, it is not expected to lead to globally competitive

they do not accentuate the problem.

ons to energy prices should therefore be kept in place steel sector will not have the capacity to invest in and made general across the EU.

Addressing carbon leakage

As pointed out in Chapter 4, carbon leakage is a reality, although at current carbon prices the EU ETS alone cannot explain the eroding competitiveness of the EU In a more and more globalised economy and an industry. A number of studies have endeavoured to ever-changing competitive environment, unilateral address the problem of the CO_2 embodied in imports climate action by the EU can only further damage the into the EU through carbon border tax measures. But competitive position of the EU steel industry. designing an enforceable system seems to present insuperable obstacles. This is particularly true for steel In light of this, future climate policies should hinge on which has a relatively long value chain. Imposing a CO₂ tax on imports of crude steel would inevitably displace the problem to the next step of the value chain, namely hot rolled products, and so on down to fabricated products in which the amount of steel, its origin and

carbon footprint would be almost impossible to trace back.

Furthermore recent experience in the aviation sector shows that border measures are likely to trigger retaliatory measures by trading partners.

In terms of protection against the risk of carbon leakage, free allocation (based on meaningful benchmarks to push the whole sector to best-practice) seems to be energy infrastructure, energy efficient buildings and the most effective and practicable policy instrument.

STRONG EU INDUSTRIAL POLICY FOSTERING SUSTAINABLE GROWTH

A strong and competitive industrial base in Europe is crucial to making a successful transition to prerequisite for this is that the activity must remain a sustainable economy. This requires setting a profitable. predictable policy framework aimed at developing low carbon strategies over the long-term and avoiding Steel is a strategic industry for the EU. Steel as a concentration only on the short-term political agenda. The EU is among the regions with the highest labour of the EU. The EU steel sector managed over the and regulatory costs. High energy prices compared past decades to remain competitive despite adverse to other regions are by themselves a very significant threat to the competitiveness of EU industry.⁶⁰

The need to have stable and credible policies is not just Future climate and energy policies should therefore to maintain competitiveness, but also to ensure that focus on competitiveness and growth and avoid substantial financing is available to the industry at distorting trade flows. large. Without the support of the investors, including

60 IEA, Key World Energy Statistics 2012.

59

Exemption from distortive taxes, levies and other add- the boards of multinationals and their banks, the EU decarbonisation technologies or anything else. The problem is currently being made more acute in light of the lasting economic crisis and the bleak market outlook for steel in Europe.

- a set of key principles with a view to making the EU economy more competitive:
- implement economic climate-friendly opportunities where they are the cheapest;
- use climate change revenues to enable a smooth and gradual transition;
- help sectors exposed to the impact of climate policies to remain competitive in order to avoid a potential decline in investment and employment. The appropriate safeguards should be put in place;
- design the rules so as to allow growth (capped absolute emissions should not hamper growth).

Moving to a low carbon economy will require new lighter transport systems. This will only be possible through the use of more innovative steel grades. Steel is also a globally traded commodity with generally low profit margins. The EU must provide an appropriate environment so that the investments needed to develop innovative steel applications and lean-carbon steelmaking technologies take place in the EU. A

material is instrumental in the economic development conditions. Globally steel is a growing market and the EU steel sector should be enabled to seize the opportunities fast-growing economies are offering.

⁵⁹ Allwood J.M., Cullen J.M., et al., 2012. Sustainable Materials: with both eyes open, UIT Cambridge, England.

as laid down in the EU ETS directive is a purely EU ETS are adding to other costs that may or may not more time to adjust than others. be related to other EU or national energy and climate policies. Even if most of the focus is on CO_2 emissions For instance, power generation can already rely on chain under pressure, upwards and downwards.

customer base – some of it in the renewable energy industry – but also on competitive SMEs to which many activities like transport, maintenance and Therefore bespoke policies to address investment IT are outsourced. Retaining the steel industry's economy.

To date free allocation has provided a decent level of protection against the risk of carbon leakage. Over The earmarking of EU ETS revenues to fund research are not there. Other measures will have to be devised.

SUPPORT FOR INNOVATIVE LOW CARBON STEELMAKING TECHNOLOGIES

The ULCOS programme identified four potential breakthrough technologies leading to abatement levels above 50%. Two of them have reached the pilot plant stage (ULCOS-BF and HIsarna). A pilot ULCORED plant which are commensurate with their ambitions might be started up in coming years, but there are no and in a timely fashion. As potential breakthrough plans currently for ULCOWIN/ULCOLYSIS plants. Given the high level of uncertainty and risk, carbon pricing will not be able to put these technologies into motion. Instead targeted support policies are needed to go to also to ensure the rapid roll-out of these technologies. the demonstration and then deployment phases.

The deployment of breakthrough technologies on a commercial scale will not only require huge investments but also a lot of time, particularly for a sector like steel with capital-intensive production processes that have

The risk of carbon leakage comes on top of other been optimised over decades, if not centuries. In this factors threatening the competitiveness of the EU respect, long-term climate policies should foster the industry. The issue therefore has to be appraised from conditions needed for all segments of the economy to a broader perspective. The carbon leakage assessment have sufficient financing and time to adapt to the low carbon future. Policy must take into account the fact technical exercise, looking only at the EU ETS costs. that, depending on their specific situation and the level The reality is as often more complex. The costs of the of transformation required, some sectors may need

stemming from steelmaking, unilateral climate and a wide range of processes and carbon-lean energy energy policies are prone to put the whole steel value sources (nuclear, renewables), the cost of which is spread over a large part of society. But steelmaking will have to rely on technologies which are not yet The EU steel industry relies heavily on a competitive proven and whose development the steel sector is not able to finance on its own.

risks and competition issues have to be put in competitiveness will benefit large parts of the place. Governments should commit public funds for demonstration-scale projects, especially in sectors like the steel industry.

time, free allocation will decrease as the CO₂ emissions and innovation in CO₂-lean technologies is an option cap is reduced. The level of protection given by free that should be explored. These revenues, however, allocation might not be sufficient if at some point in will become increasingly inadequate as the volume time the technologies that could enable the steel of allowances available for auction decreases over industry to abate its emissions at a competitive cost time. Furthermore the amount of revenues will depend on the allowance price, which may be too low (e.g. in periods of economic downturn) to provide the appropriate funding. Project funding through the NER300 suffers from the same problem and should be fixed. In parallel, research cooperation and public private partnerships (PPP) should be encouraged further.

> To conclude, climate policies require the allocation of resources to research and innovation programmes technologies involve huge investments and high financial risks, public funds are indispensable not only through the pilot and demonstration-scale phases but Climate policies should therefore be aligned with EU and national budgets for research and innovation.

KEY-FINDINGS AND POLICY RECOMMENDATIONS

For the time being there are no economically feasible In this context, the objectives proposed in the steelmaking technologies available that have the Commission Low Carbon Roadmap for the EU ETS of potential to meet the CO₂ reduction pathway envisaged 43-48% by 2030 and 88-92% by 2050 compared to 2005 in the Commission Roadmap for a Low Carbon Economy levels are not feasible for the steel industry unless in 2050. Further work and research into carbon-lean legislators create the right framework conditions technologies must be first carried out.

At best, the implementation of cost-effective CO_2 industry competitive on a global scale. mitigation technologies could decrease the steel sector's CO₂ intensity by 15% in 2050 compared to 2010. Going beyond this level of reduction would require resorting to yet unproven technologies in combination with CCS, hence involving huge investment in competitive low carbon Europe requires the spread infrastructure and higher operating costs. Such a of new technologies and large investments in new scenario would lead to a reduction of absolute CO_2 infrastructure. Because of steel's contribution both emissions of ca. 60% in 2050 compared to 1990, still to carbon-lean solutions and to the EU's economic falling short of the EU's 80% aspirational objective. wealth, a competitive low carbon Europe relies heavily Should competing regions not be submitted to such constraints, the uptake of 'breakthrough' technologies by the EU steel industry will not be affordable.

with supportive policies facilitating the emergence of breakthrough technologies while keeping the EU steel

Nonetheless, the EU steel industry is committed to unlocking the far-reaching energy and CO₂ saving potential in Europe. The transition towards a on an economically healthy, modern, innovative and globally competitive European steel industry. A longterm European policy must clearly express this as a starting point and adopt it as a guiding principle for the development and implementation of the relevant measures and policy instruments.

- deliver further measureable cost-efficient improvements in carbon and energy efficiency,
- implement incremental technologies (mainly process optimisation and retrofits),
- continue investing in R&D for mitigation of direct and indirect emissions from the sector,
- reinforce horizontal cooperation in best-practice sharing , energy efficiency, R&D, demonstration and pilot plant projects in relevant existing or new platforms,
- apply innovative technologies if economic viability is met,
- continue to work on the development of innovative steel grades for CO₂ mitigation and carbon-lean steel applications, together with our customers,
- actively participate in finding global solutions to mitigate CO₂ emissions in the steel sector. This includes development of international standards on CO₂ measurement and performance assessment, further refine the work initiated with this steel roadmap and find a real dialogue on this with policymakers and other stakeholders.

In order for the EU steel sector to be able to step up its efforts and in doing so overcome the associated challenging technical, economic and political barriers, a number of conditions must be met.

Firstly, ambitious climate objectives must be based on a commensurate industrial policy. This requires first and foremost sheltering the steel industry from distortive CO₂ costs and providing access to energy and raw materials at competitive prices so that steelmaking remains a profitable activity in Europe. Future EU climate and energy policies must be such that they foster growth and attract inward investments.

to facilitate the development and deployment of innovative technologies. The EU ETS on its own and as it is designed now is not able to bring breakthrough technologies into being in all sectors.

Thirdly, the extent to which CO_2 pricing and CO_2 targets are applied must be determined in accordance with a sector's ability to respond positively to such drivers. At the very least, this necessitates more differentiated treatment between the power sector and manufacturing sectors.

In this context, the EU steel industry is committing to: Against this background EUROFER suggests the following policy recommendations:

FUTURE POLICIES HAVE TO RETAIN THE COMPETITIVENESS OF THE STEEL INDUSTRY

- 1. Climate change is a global issue which requires a global response. In an ever more globalised economy, this can only be achieved through the enforcement of a comprehensive international agreement providing equal treatment for the production of globally traded goods with an effective monitoring and verification system. EU climate targets should be dependent upon comparable reduction efforts by other major economies.
- 2. Climate policies need to differentiate between sectors which can meet the overall target (e.g. the power sector) and those which cannot (steel). Emission reduction pathways for the steel industry should be built 'bottom-up' which means they need to be based on abatement levels which are technically and economically feasible, irrespective of the overall cap.
- 3. With a view to preserving the competitiveness of European industries exposed to international trade, best performers in sectors should incur no direct or indirect burdens resulting from climate policies. In the context of cap and trade, best performers need 100% of their allowances for free (no correction factor should apply) and their indirect CO₂ costs must be fully and consistently offset through an EU mechanism (based on realistic benchmarks) at least until international distortions to competition are removed.
- Second, supporting policies have to be put in place 4. Whilst globally competitive energy prices are a precondition for certain CO₂ abatement technologies, energy prices higher in Europe than in competing regions will not contribute to specific CO₂ reductions in the steel industry but to the industry's relocation to non-EU countries. EU energy policies must be aimed at securing globally competitive energy prices for industry. This means, among other things, deploying renewable energy in a truly cost-effective way and investigating the sustainable extraction of new forms of energy. To the same purpose, exemptions from energy taxes, network and renewables tariffs and levies have to be continued and made general.

ADEQUATE SUPPORT FOR NEW **TECHNOLOGIES IS REQUIRED TO BRING ABOUT DRASTIC CO₂ EMISSION REDUCTIONS IN THE STEEL INDUSTRY**

- 5. EU and Member States need to provide the fundamentals required for the implementation of the strategic technology path of the steel industry. This ranges from a high level of support for R&D, demonstration and deployment of new technologies, including infrastructure investments, installation, operation and access to Carbon Capture and Storage, as well as an adequate legal framework. This also includes public responsibility for the establishment of the pre-conditions for a successful implementation of new technologies.
- 6. To this end public funds should be provided consistent with the level of support needed. Financial support should cover all stages from research to deployment at industrial scale of the technologies and infrastructure. Funding could for instance come from the earmarking of the revenues from the EU ETS, in particular for mitigation at source and financing of related infrastructures.
- 7. In parallel, an appropriate set of incentives should be put in place to promote the sequestration of CO_2 into products.
- 8. The recovery of industrial waste energy (waste gases, heat and pressure) should be promoted through incentives similar to those available for renewable energy generation.

FUTURE POLICIES MUST RECOGNISE THE POSITIVE ROLE STEEL WILL PLAY

9. Climate policies should encourage and not hamper the production of steel as steel will play a key-role in the decarbonisation of the EU. If steel is not produced in Europe, many industrial supply chains are at risk of relocation.

63

10. The view should be broadened to an integrated approach so as to capitalise on the benefits of innovative steel grades and steel applications in CO₂ mitigation. This, for example, means an approach that evaluates a sector's emissions over several complete life cycles of its products and along the value adding chains it is part of. This not only entails increased use of design for recycling, recyclability and life cycle evaluations, but also the monitoring of market developments in iron and steel scrap in order to identify any adverse conditions in recycling markets, and analysing pressures on scrap flows to less emission-efficient regions.

A COHERENT AND PREDICTABLE POLICY FRAMEWORK

11. The efficiency of existing policies should be examined openly and transparently through realistic impact assessments, as should improvements or alternatives to the EU ETS to achieve cost-efficient emission reductions in the EU steel industry post 2020.

12. EU Climate policy should be designed in a way it has the potential to convince third countries to enter in a global climate agreement. This would require among others realistic benchmarks and no cap on allocation.

13. EU Energy and Climate Policies should constitute a coherent package. Overlapping policies should be avoided. The 2020 CO_2 , renewables and energy efficiency targets overlap, causing confusion and hampering investment. There should be no binding targets for renewables and energy efficiency.

14. For the sake of predictability, EU institutions should refrain from constantly interfering in the agreed climate policy framework and targets. Once in place, these should remain unaffected.

LIST OF ABBREVIATIONS

BAT	Best available technology	ŀ
BCG	The Boston Consulting Group	ŀ
BF	Blast furnace	ŀ
BF-BOF	Blast furnace-basic oxygen furnace	[
BF-TGR	Blast furnace with top gas recycling	
BOF	Basic oxygen furnace	
CAGR	Compound annual growth rate	J
CAPEX	Capital expenditure	k
CCS	Carbon capture and storage	k
CCU	Carbon capture and use	L
CDQ	Coke dry quenching	L
CO	Carbon monoxide	Ν
CO2	Carbon dioxide	Ν
COG	Coke-oven gas	$\left \right\rangle$
CS	Crude steel	(
DR	Direct reduction	C
DRI	Direct reduced iron	
EAF	Electric arc furnace	C
EBF	Experimental Blast Furnace	C
EIA	US Energy Information Administration	F
EU ETS	European Union Emissions Trading Scheme	F
EU	European Union	F
EU15	Member states of the European Union	\subseteq
	(as of December 31, 2003)	S
EU27	Member states of the European Union	S
	(since January 1, 2007)	Т
EUROFER	The European Steel Association	Т
Fe	Ferrum, iron	Т
GDP	Gross domestic product	ί
GHG	Greenhouse gases	ί
GJ	Gigajoule (one billion joule)	V
Gt	Gigatonne (one billion metric tonnes)	

2	Hydrogen
BI	Hot briquetted iron
CI	Hot compacted iron
A	International Energy Agency
CC	Intergovernmental Panel on
	Climate Change
C	Joint Research Centre
5	Kilogram
Vh	Kilowatt hour
A	Life Cycle Assessment
JLUCF	Land Use, land-use change and forestry
t	Megatonne (one million metric tonnes)
Wh	Megawatt hour
G	Natural gas
2	Oxygen
ECD	Organisation for Economic Co-operation
	and Development
HF	Open-hearth furnace
PEX	Operational expenditure
	Pulverised coal injection
ЭР	Public Private Partnership
&D	Research and Development
2	Smelting reduction
R-BOF	Smelting reduction-basic oxygen furnace
RV	Smelting Reduction Vessel
GR	Top gas recycling
Wh	Terawatt hour
SL.	Top gas recovery turbine
LCOS	Ultra-Low CO ₂ Steelmaking
N	United Nations
DEh	Steel Institute
	(Verein Deutscher Eisenhüttenleute)

REFERENCES

Allwood J.M., Cullen J.M., et al. (2012), Sustainable Materials: with both eyes open, UIT Cambridge, England.

Bellevrat E., Menanteau Ph. (2009), Introducing Carbon Constraints in the Steel Sector: ULCOS Scenarios and Economic Modelling (La Revue de Métallurgie – CIT).

Birat J.-P., Lorrain J.-P (2009), The "Cost Tool": operating and capital costs of existing breakthrough routes in a future studies framework (La Revue de Métallurgie – CIT).

Birat J.-P, Lorrain J.-P, de Lassat Y. (2009), The "CO₂ Tool": CO₂ emissions & Energy consumption of existing & breakthrough steelmaking routes (La Revue de Métallurgie – CIT).

Birat J.-P., Borlée J., Lavelaine H., Sert D., Négro P., Meijer K., van der Stel J., Sikstrom P. (2012), Ulcos Programme: an update in 2012, 4th International Conference on Process Development in Iron and Steelmaking, 10-13 June 2012, Luleå, Sweden.

Birat J.-P. (2010), Steel sectoral report, Contribution to the UNIDO roadmap on CCS, "Global Technology Roadmap for CCS in Industry" sectoral workshop, Abu Dhabi, 30 June-1 July 2010.

The Boston Consulting Group (2010), CO₂-Bilanz Stahl, Ein Beitrag zum Klimaschutz.

The Boston Consulting Group, Steel Institute VDEh (2013), Steel's Contribution to a Low-Carbon Europe 2050. Technical and economic analysis of the EU27 steel sector's CO₂ abatement potentials.

Brinkley A., Less S. (2010), Carbon Omissions - Consumption-based accounting for international carbon emissions (Policy Exchange, research Note).

Diemer P., Killich H.-J., Knop K., Lüngen H.-B., Reinke M. and Schmöle P. (2004), 'Potentials for utilization of coke oven gas in integrated iron and steel works', 2nd International meeting on ironmaking/1st International symposium on iron ore. Vitoria, Espirito Santo, Brazil.

EIA (2011), International Energy Outlook 2011.

European Commission Communication "A Roadmap for moving to a competitive low carbon economy in 2050" (COM(2011) 112 final), Impact assessment (SEC(2011) 288 final).

European Commission Communication "Energy Roadmap 2050" (COM(2011) 885/2), Impact assessment (SEC(2011) 1565/2).

European Commission Communication to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Future of Carbon Capture and Storage in Europe (COM(2013)180).

European Commission Consultative Communication on the future of Carbon Capture and Storage in Europe (Reference: MEMO/13/276, 27 March 2013).

Finkbeiner M., Sabrina Neugebauer S. (2012), Resource efficiency and life cycle assessment, Multirecycling of steel.

Hidalgo I., Szabo L., Ciscar J.-C., Soria A. (2005), Technological prospects and CO₂ Emission Trading Analyses in the Iron and Steel Industry: A Global Model.

65

Hooey L., Tobiesen A., Johns J. and Santos S. (2013), Techno-Economic Evaluation of Incorporating CO₂ Capture in an Integrated Steel Mill.

IEA (2011), Summing up the Parts: Combining Policy Instruments for Least-Cost Climate Mitigation Strategies

IEA (2012), Energy Technology Perspectives 2012, OECD/IEA, Paris.

IEA (2012), Key World Energy Statistics 2012.

IEAGHG (2013), 'Overview of the current state and development of CO₂ capture technologies in the ironmaking process'.

ISO 14 404-1: Calculation method of carbon dioxide emission intensity from iron and steel production -- Part 1: Steel plant with blast furnace.

ISO 14 404-2: Calculation method of carbon dioxide emission intensity from iron and steel production -- Part 2: Steel plant with electric arc furnace (EAF).

Knop, K., Hallin, M. and Burström, E. (2009), ULCORED SP 12, Concept for minimized CO_2 emission, La Revue de Métallurgie-CIT, Sept. 2009 & Oct. Revue de Métallurgie, Number 10, October 2009, 419 – 421, Selected papers from 4th ULCOS SEMINAR (Part 2).

Laplace Conseil (2013), The future of steel: how will the industry evolve?

Moya J.A., Pardo N. (Journal of Cleaner Production – 2013), The potential for improvements in energy efficiency and CO₂ emissions in the EU27 iron and steel industry under different payback periods.

Pardo N., Moya J.A., Vatopoulos K. (2012), Prospective Scenarios on Energy Efficiency and CO₂ Emissions in the EU Iron & Steel Industry (JRC Scientific and Policy Reports).

Peters G.P. et al. (2011), Growth in emission transfers via international trade from 1990 to 2008 (PNAS).

Worldsteel (2013), World steel in figures 2013.

Zero Emission Platform (2011), The Costs of CO₂ Capture, Transport and Storage, Post-demonstration CCS in the EU.

http://www.ulcos.org/fr/research/advanced_direct_reduction.php

http://www.unido.org/fileadmin/user_media/Services/Energy_and_Climate_Change/Energy_Efficiency/ CCS/Stee_sectoral_%20report.pdf

http://www.zeroco2.no/projects/list-projects/

EUROFER - The European Steel Association Avenue de Cortenbergh, 172 B-1000 Brussels +32 2 738 79 20 www.eurofer.eu